Skip to main content

Advertisement

Log in

SynCAMs in Normal Vertebrate Neural Development and Neuropsychiatric Disorders: from the Perspective of the OCAs

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal synaptic junctions connect neurons to enable neuronal signal transmission in the nervous system. The proper establishment of synaptic connections required many adhesion molecules. Malfunctions of these adhesion molecules can result in neural development disorders and neuropsychiatric disorders. How specific synapses are established by various adhesion molecules for proper neural circuitry is a fundamental question of neuroscience. SynCAMs, also named CADMs, Necl, etc., are among the many adhesion proteins found in synapses. Here, we review the current understanding of the physical properties of SynCAMs and their roles in axon pathfinding, myelination, synaptogenesis, and synaptic plasticity. In addition, we discuss the involvement of SynCAMs in neuropsychiatric disorders. Finally, we propose that SynCAM functions can be better viewed and understood from the perspective of orientational cell adhesions (OCAs). In particular, we discuss the possibilities of how SynCAMs can be regulated at the cell-type specific expression, transcription variants, posttranslational modification, and subcellular localization to modulate the diversity of SynCAMs as OCA molecules. Being major components of the synapses, SynCAMs continue to be an important research topic of neuroscience, and many outstanding questions are waiting to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531

    Article  CAS  PubMed  Google Scholar 

  2. Cameron S, McAllister AK (2018) Immunoglobulin-like receptors and their impact on wiring of brain synapses. Annu Rev Genet 52:567–590

    Article  CAS  PubMed  Google Scholar 

  3. Zinn K, Ozkan E (2017) Neural immunoglobulin superfamily interaction networks. Curr Opin Neurobiol 45:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pietri T, Easley-Neal C, Wilson C, Washbourne P (2008) Six cadm/SynCAM genes are expressed in the nervous system of developing zebrafish. Dev Dyn 237:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W (2003) Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94:655–667

    Article  CAS  PubMed  Google Scholar 

  6. Fukami T et al (2002) Identification of the Tslc1 gene, a mouse orthologue of the human tumor suppressor TSLC1 gene. Gene 295(1):7–12

    Article  CAS  PubMed  Google Scholar 

  7. Fogel AI, Akins MR, Krupp AJ, Stagi M, Stein V, Biederer T (2007) SynCAMs organize synapses through heterophilic adhesion. J Neurosci 27:12516–12530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujita E, Urase K, Soyama A, Kouroku Y, Momoi T (2005) Distribution of RA175/TSLC1/SynCAM, a member of the immunoglobulin superfamily, in the developing nervous system. Brain Res Dev Brain Res 154:199–209

    Article  CAS  PubMed  Google Scholar 

  9. Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y et al (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukami T, Satoh H, Williams YN, Masuda M, Fukuhara H, Maruyama T, Yageta M, Kuramochi M et al (2003) Isolation of the mouse Tsll1 and Tsll2 genes, orthologues of the human TSLC1-like genes 1 and 2 (TSLL1 and TSLL2). Gene 323:11–18

    Article  CAS  PubMed  Google Scholar 

  11. Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A, Takai Y (2005) Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 118:1267–1277

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Y, Du G, Hu X, Yu S, Liu Y, Xu Y, Huang X, Liu J et al (2005) Nectin-like molecule 1 is a protein 4.1N associated protein and recruits protein 4.1N from cytoplasm to the plasma membrane. Biochim Biophys Acta 1669:142–154

    Article  CAS  PubMed  Google Scholar 

  13. Fukuhara H, Kuramochi M, Nobukuni T, Fukami T, Saino M, Maruyama T, Nomura S, Sekiya T et al (2001) Isolation of the TSLL1 and TSLL2 genes, members of the tumor suppressor TSLC1 gene family encoding transmembrane proteins. Oncogene 20:5401–5407

    Article  CAS  PubMed  Google Scholar 

  14. Williams YN, Masuda M, Sakurai-Yageta M, Maruyama T, Shibuya M, Murakami Y (2006) Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4. Oncogene 25:1446–1453

    Article  CAS  PubMed  Google Scholar 

  15. Gerrow K, El-Husseini A (2006) Cell adhesion molecules at the synapse. Front Biosci 11:2400–2419

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Wei X (2022) Orientational cell adhesions (OCAs) for tissue morphogenesis. Trends Cell Biol

  17. Biederer T (2006) Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 87:139–150

    Article  CAS  PubMed  Google Scholar 

  18. Niederkofler V, Baeriswyl T, Ott R, Stoeckli ET (2010) Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance. Development 137:427–435

    Article  CAS  PubMed  Google Scholar 

  19. Masuda M, Yageta M, Fukuhara H, Kuramochi M, Maruyama T, Nomoto A, Murakami Y (2002) The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J Biol Chem 277:31014–31019

    Article  CAS  PubMed  Google Scholar 

  20. Yageta M, Kuramochi M, Masuda M, Fukami T, Fukuhara H, Maruyama T, Shibuya M, Murakami Y (2002) Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer. Cancer Res 62:5129–5133

    CAS  PubMed  Google Scholar 

  21. Thomas LA, Akins MR, Biederer T (2008) Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J Comp Neurol 510:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shingai T, Ikeda W, Kakunaga S, Morimoto K, Takekuni K, Itoh S, Satoh K, Takeuchi M et al (2003) Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J Biol Chem 278:35421–35427

    Article  CAS  PubMed  Google Scholar 

  23. Dong X, Xu F, Gong Y, Gao J, Lin P, Chen T, Peng Y, Qiang B et al (2006) Crystal structure of the V domain of human nectin-like molecule-1/Syncam3/Tsll1/Igsf4b, a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule. J Biol Chem 281:10610–10617

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, An T, Li D, Fan Z, Xiang P, Li C, Ju W, Li J et al (2019) Structure of the heterophilic interaction between the nectin-like 4 and nectin-like 1 molecules. Proc Natl Acad Sci U S A 116:2068–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrison OJ, Vendome J, Brasch J, Jin X, Hong S, Katsamba PS, Ahlsen G, Troyanovsky RB et al (2012) Nectin ectodomain structures reveal a canonical adhesive interface. Nat Struct Mol Biol 19:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Narita H, Yamamoto Y, Suzuki M, Miyazaki N, Yoshida A, Kawai K, Iwasaki K, Nakagawa A et al (2011) Crystal Structure of the cis-Dimer of Nectin-1: implications for the architecture of cell-cell junctions. J Biol Chem 286:12659–12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Samanta D, Ramagopal UA, Rubinstein R, Vigdorovich V, Nathenson SG, Almo SC (2012) Structure of Nectin-2 reveals determinants of homophilic and heterophilic interactions that control cell-cell adhesion. Proc Natl Acad Sci U S A 109:14836–14840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fogel AI, Stagi M, Perez de Arce K, Biederer T (2011) Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. EMBO J 30:4728–4738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fogel AI, Li Y, Giza J, Wang Q, Lam TT, Modis Y, Biederer T (2010) N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion. J Biol Chem 285:34864–34874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galuska SP, Rollenhagen M, Kaup M, Eggers K, Oltmann-Norden I, Schiff M, Hartmann M, Weinhold B et al (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci U S A 107:10250–10255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao J, Chen T, Hu G, Gong Y, Qiang B, Yuan J, Peng X (2008) Nectin-like molecule 1 is a glycoprotein with a single N-glycosylation site at N290KS which influences its adhesion activity. Biochim Biophys Acta 1778:1429–1435

    Article  CAS  PubMed  Google Scholar 

  32. Rollenhagen M, Kuckuck S, Ulm C, Hartmann M, Galuska SP, Geyer R, Geyer H, Muhlenhoff M (2012) Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J Biol Chem 287:35170–35180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrao R, Wallweber HJ, Ho H, Tam C, Franke Y, Quinn J, Lupardus PJ (2016) The structural basis for class II cytokine receptor recognition by JAK1. Structure 24:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei Z, Li Y, Ye F, Zhang M (2015) Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J Biol Chem 290:11384–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    Article  CAS  PubMed  Google Scholar 

  36. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA et al (2008) A specificity map for the PDZ domain family. PLoS Biol 6:e239

    Article  PubMed  PubMed Central  Google Scholar 

  37. Luck K, Charbonnier S, Trave G (2012) The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett 586:2648–2661

    Article  CAS  PubMed  Google Scholar 

  38. Einheber S, Meng X, Rubin M, Lam I, Mohandas N, An X, Shrager P, Kissil J et al (2013) The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 61:240–253

    Article  PubMed  Google Scholar 

  39. Fukuhara H, Masuda M, Yageta M, Fukami T, Kuramochi M, Maruyama T, Kitamura T, Murakami Y (2003) Association of a lung tumor suppressor TSLC1 with MPP3, a human homologue of Drosophila tumor suppressor Dlg. Oncogene 22:6160–6165

    Article  CAS  PubMed  Google Scholar 

  40. Stagi M, Fogel AI, Biederer T (2010) SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proc Natl Acad Sci U S A 107:7568–7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheadle L, Biederer T (2012) The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. J Cell Biol 199:985–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ivanovic A, Horresh I, Golan N, Spiegel I, Sabanay H, Frechter S, Ohno S, Terada N et al (2012) The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J Cell Biol 196:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meng X, Maurel P, Lam I, Heffernan C, Stiffler MA, McBeath G, Salzer JL (2019) Necl-4/Cadm4 recruits Par-3 to the Schwann cell adaxonal membrane. Glia 67:884–895

    Article  PubMed  Google Scholar 

  44. Baines AJ, Lu HC, Bennett PM (2014) The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 1838:605–619

    Article  CAS  PubMed  Google Scholar 

  45. Hoover KB, Bryant PJ (2000) The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol 12:229–234

    Article  CAS  PubMed  Google Scholar 

  46. Ye F, Zeng M, Zhang M (2018) Mechanisms of MAGUK-mediated cellular junctional complex organization. Curr Opin Struct Biol 48:6–15

    Article  CAS  PubMed  Google Scholar 

  47. Frei JA, Andermatt I, Gesemann M, Stoeckli ET (2014) The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. J Cell Sci 127:5288–5302

    PubMed  Google Scholar 

  48. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  CAS  PubMed  Google Scholar 

  50. Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM et al (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61:734–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aoto J, Ting P, Maghsoodi B, Xu N, Henkemeyer M, Chen L (2007) Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J Neurosci 27:7508–7519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kayser MS, McClelland AC, Hughes EG, Dalva MB (2006) Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci 26:12152–12164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sara Y, Biederer T, Atasoy D, Chubykin A, Mozhayeva MG, Sudhof TC, Kavalali ET (2005) Selective capability of SynCAM and neuroligin for functional synapse assembly. J Neurosci 25:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoy JL, Constable JR, Vicini S, Fu Z, Washbourne P (2009) SynCAM1 recruits NMDA receptors via protein 4.1B. Mol Cell Neurosci 42:466–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M et al (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27:427–430

    Article  CAS  PubMed  Google Scholar 

  56. Park KA, Ribic A, Laage Gaupp FM, Coman D, Huang Y, Dulla CG, Hyder F, Biederer T (2016) Excitatory synaptic drive and feedforward inhibition in the hippocampal CA3 circuit are regulated by SynCAM 1. J Neurosci 36:7464–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robbins EM, Krupp AJ, Perez de Arce K, Ghosh AK, Fogel AI, Boucard A, Sudhof TC, Stein V et al (2010) SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron 68:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T (2012) A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem 123:886–894

    Article  CAS  PubMed  Google Scholar 

  59. Perez de Arce K, Schrod N, Metzbower SWR, Allgeyer E, Kong GK, Tang AH, Krupp AJ, Stein V et al (2015) Topographic mapping of the synaptic cleft into adhesive nanodomains. Neuron 88:1165–1172

    Article  CAS  PubMed  Google Scholar 

  60. Stadelmann C, Timmler S, Barrantes-Freer A, Simons M (2019) Myelin in the central nervous system: structure, function, and pathology. Physiol Rev 99:1381–1431

    Article  CAS  PubMed  Google Scholar 

  61. Pellissier F, Gerber A, Bauer C, Ballivet M, Ossipow V (2007) The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  62. Spiegel I, Adamsky K, Eshed Y, Milo R, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS et al (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 10:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sukhanov N, Vainshtein A, Eshed-Eisenbach Y, Peles E (2021) Differential contribution of cadm1-cadm3 cell adhesion molecules to peripheral myelinated axons. J Neurosci 41:1393–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Golan N, Kartvelishvily E, Spiegel I, Salomon D, Sabanay H, Rechav K, Vainshtein A, Frechter S et al (2013) Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J Neurosci 33:10950–10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park J, Liu B, Chen T, Li H, Hu X, Gao J, Zhu Y, Zhu Q et al (2008) Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 28:12815–12819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu Y, Li H, Li K, Zhao X, An T, Hu X, Park J, Huang H et al (2013) Necl-4/SynCAM-4 is expressed in myelinating oligodendrocytes but not required for axonal myelination. PLoS ONE 8:e64264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujita E, Tanabe Y, Hirose T, Aurrand-Lions M, Kasahara T, Imhof BA, Ohno S, Momoi T (2007) Loss of partitioning-defective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice. Am J Pathol 171:1800–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song BG, Kwon SY, Kyung JW, Roh EJ, Choi H, Lim CS, An SB, Sohn S et al (2022) Synaptic Cell Adhesion Molecule 3 (SynCAM3) Deletion promotes recovery from spinal cord injury by limiting glial scar formation. Int J Mol Sci 23(11):6218. https://doi.org/10.3390/ijms23116218

  69. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21:9–15

    Article  CAS  PubMed  Google Scholar 

  70. Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY (2008) Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun 377:926–929

    Article  CAS  PubMed  Google Scholar 

  71. Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, Tanokura M, Momoi MY et al (2010) Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis 1:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takayanagi Y, Fujita E, Yu Z, Yamagata T, Momoi MY, Momoi T, Onaka T (2010) Impairment of social and emotional behaviors in Cadm1-knockout mice. Biochem Biophys Res Commun 396:703–708

    Article  CAS  PubMed  Google Scholar 

  73. Xu Y, Li L, Ren HT, Yin B, Yuan JG, Peng XZ, Qiang BQ, Cui LY (2018) Mutation of the cellular adhesion molecule NECL2 is associated with neuromyelitis optica spectrum disorder. J Neurol Sci 388:133–138

    Article  CAS  PubMed  Google Scholar 

  74. Sandau US, Alderman Z, Corfas G, Ojeda SR, Raber J (2012) Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS ONE 7:e36424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Day FR, Helgason H, Chasman DI, Rose LM, Loh PR, Scott RA, Helgason A, Kong A et al (2016) Physical and neurobehavioral determinants of reproductive onset and success. Nat Genet 48:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ibrahim-Verbaas CA, Bressler J, Debette S, Schuur M, Smith AV, Bis JC, Davies G, Trompet S et al (2016) GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol Psychiatry 21:189–197

    Article  CAS  PubMed  Google Scholar 

  77. Pasman JA, Verweij KJH, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL, Abdellaoui A, Nivard MG et al (2018) GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci 21:1161–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, Murray AD, Smith BH et al (2017) Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol Psychiatry 22:1376–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, Shields DC, Abrahams BS et al (2012) A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet 131:565–579

    Article  PubMed  Google Scholar 

  80. Albayrak O, Putter C, Volckmar AL, Cichon S, Hoffmann P, Nothen MM, Jockel KH, Schreiber S et al (2013) Common obesity risk alleles in childhood attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 162B:295–305

    Article  PubMed  Google Scholar 

  81. Rebelo AP, Cortese A, Abraham A, Eshed-Eisenbach Y, Shner G, Vainshtein A, Buglo E, Camarena V et al (2021) A CADM3 variant causes Charcot-Marie-Tooth disease with marked upper limb involvement. Brain 144:1197–1213

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang X, Li W, Kang Y, Zhang J, Yuan H (2013) SynCAM, a novel putative tumor suppressor, suppresses growth and invasiveness of glioblastoma. Mol Biol Rep 40:5469–5475

    Article  CAS  PubMed  Google Scholar 

  83. Raveh S, Gavert N, Spiegel I, Ben-Ze’ev A (2009) The cell adhesion nectin-like molecules (Necl) 1 and 4 suppress the growth and tumorigenic ability of colon cancer cells. J Cell Biochem 108:326–336

    Article  CAS  PubMed  Google Scholar 

  84. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A 102:6137–6142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hunter PR, Nikolaou N, Odermatt B, Williams PR, Drescher U, Meyer MP (2011) Localization of Cadm2a and Cadm3 proteins during development of the zebrafish nervous system. J Comp Neurol 519:2252–2270

    Article  CAS  PubMed  Google Scholar 

  86. Bessieres B, Jia M, Travaglia A, Alberini CM (2019) Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. Learn Mem 26:436–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ribic A, Crair MC, Biederer T (2019) Synapse-selective control of cortical maturation and plasticity by parvalbumin-autonomous action of SynCAM 1. Cell Rep 26(381–393):e386

    Google Scholar 

  88. Kulaeva OI, Nizovtseva EV, Polikanov YS, Ulianov SV, Studitsky VM (2012) Distant activation of transcription: mechanisms of enhancer action. Mol Cell Biol 32:4892–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fukami T, Fukuhara H, Kuramochi M, Maruyama T, Isogai K, Sakamoto M, Takamoto S, Murakami Y (2003) Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer 107:53–59

    Article  CAS  PubMed  Google Scholar 

  91. Gao J, Chen T, Liu J, Liu W, Hu G, Guo X, Yin B, Gong Y et al (2009) Loss of NECL1, a novel tumor suppressor, can be restored in glioma by HDAC inhibitor-Trichostatin A through Sp1 binding site. Glia 57:989–999

    Article  PubMed  Google Scholar 

  92. de Arce KP, Ribic A, Chowdhury D, Watters K, Thompson GJ, Sanganahalli BG, Lippard ETC, Rohlmann A et al (2023) Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nat Commun 14:459

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yamagata M, Duan X, Sanes JR (2018) Cadherins Interact With Synaptic Organizers to Promote Synaptic Differentiation. Front Mol Neurosci 11:142

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, Ramirez JT, McKeithan WL, Fattahi F et al (2023) Programming multicellular assembly with synthetic cell adhesion molecules. Nature 614:144–152

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

L. Zhang was supported by the Department of Psychology at Dalian Medical University. X. Wei was supported by the Department of Ophthalmology at the University of Pittsburgh, the Eye and Ear Foundation of Pittsburgh, and an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Contributions

Lili Zhang and Xiangyun Wei contributed to literature review and analysis, conceptualization of the review scope, and the initial draft of the manuscript. Xiangyun Wei revised and edited the final version. Both authors approved the final manuscript.

Corresponding authors

Correspondence to Lili Zhang or Xiangyun Wei.

Ethics declarations

Ethics Approval

The submitted manuscript is a review article. No wet lab research has been conducted by the authors for this manuscript. Thus, no ethics approval is required.

Consent to Participate

Not applicable

Consent to Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wei, X. SynCAMs in Normal Vertebrate Neural Development and Neuropsychiatric Disorders: from the Perspective of the OCAs. Mol Neurobiol 61, 358–371 (2024). https://doi.org/10.1007/s12035-023-03579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03579-2

Keywords

Navigation