Skip to main content

Advertisement

Log in

The Role of Neuronal NLRP1 Inflammasome in Alzheimer’s Disease: Bringing Neurons into the Neuroinflammation Game

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer’s disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alzheimer’s Association (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13(4):325–373. https://doi.org/10.1016/j.jalz.2017.02.001

  2. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J (2018) Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol 14(1):22–40. https://doi.org/10.1038/nrneurol.2017.162

    Article  CAS  PubMed  Google Scholar 

  4. Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73(4):504–517

    CAS  PubMed  Google Scholar 

  5. Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s Dement Transl Res Clin Interv 4:195–214. https://doi.org/10.1016/j.trci.2018.03.009

    Article  Google Scholar 

  6. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement 12(6):719–732. https://doi.org/10.1016/j.jalz.2016.02.010

    Article  Google Scholar 

  7. Walters A, Phillips E, Zheng R, Biju M, Kuruvilla T (2016) Evidence for neuroinflammation in Alzheimer’s disease. Prog Neurol Psychiatry 20(5):25–31

    Google Scholar 

  8. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97

    CAS  PubMed  Google Scholar 

  10. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E et al (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23. https://doi.org/10.1186/s13024-016-0088-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B et al (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 22(10):1676–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125(4):629–637

    CAS  PubMed  Google Scholar 

  13. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049

    PubMed  PubMed Central  Google Scholar 

  14. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    CAS  PubMed  Google Scholar 

  15. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022

    CAS  PubMed  Google Scholar 

  16. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118

    CAS  PubMed  Google Scholar 

  17. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412

    PubMed  PubMed Central  Google Scholar 

  18. Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P (2005) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Rev 48(2):220–233

    CAS  PubMed  Google Scholar 

  19. Griffiths MR, Gasque P, Neal JW (2010) The regulation of the CNS innate immune response is vital for the restoration of tissue homeostasis (repair) after acute brain injury: a brief review. Int J Inflam 2010:151097

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci 29(3):185–194

    CAS  PubMed  Google Scholar 

  22. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4(1):1–13

    Google Scholar 

  23. Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S et al (2011) Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 25(1):59–76

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Swardfager W, Lanctt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. https://doi.org/10.1016/j.biopsych.2010.06.012

    CAS  PubMed  Google Scholar 

  25. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Publ Gr 14(3):133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  Google Scholar 

  26. Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A (2008) Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 12(6a):2255–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gold M, El Khoury J (2015) β-Amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin Immunopathol 37:607–611

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dansokho C, Heneka MT (2018) Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm 125(5):771–779. https://doi.org/10.1007/s00702-017-1831-7

    Article  CAS  PubMed  Google Scholar 

  29. Tan MS, Yu JT, Jiang T, Zhu XC, Tan L (2013) The NLRP3 Inflammasome in Alzheimer’s disease. Mol Neurobiol 48(3):875–882. https://doi.org/10.1007/s12035-013-8475-x

    Article  CAS  PubMed  Google Scholar 

  30. Davis BK, Wen H, Ting JPY (2011) The Inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29(1):707–735

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2012) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678

    PubMed  PubMed Central  Google Scholar 

  32. Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Invest 127(9):33–35

    Google Scholar 

  33. Adamczak SE, De Rivero Vaccari JP, Dale G, Brand FJ, Nonner D, Bullock M et al (2014) Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 34(4):621–629

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD et al (2014) Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5(8):e1382

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2012) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord 26(3):277–281

    CAS  PubMed  Google Scholar 

  36. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430

  37. Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426

    CAS  PubMed  Google Scholar 

  38. Chavarría-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265(1):22–34

    PubMed  Google Scholar 

  39. Sastalla I, Crown D, Masters SL, McKenzie A, Leppla SH, Moayeri M (2013) Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics 14(1):1–10

    Google Scholar 

  40. Yu CH, Moecking J, Geyer M, Masters SL (2018) Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J Mol Biol 430(2):142–152. https://doi.org/10.1016/j.jmb.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  41. Inohara N, Chamaillard M, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383

    CAS  PubMed  Google Scholar 

  42. Kersse K, Bertrand MJM, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22(5–6):257–276. https://doi.org/10.1016/j.cytogfr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  43. D’Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC (2011) CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One 6(11):e27396

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswamis C et al (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287(30):25030–25037

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maharana J (2018) Elucidating the interfaces involved in CARD-CARD interactions mediated by NLRP1 and Caspase-1 using molecular dynamics simulation. J Mol Graph Model 80:7–14. https://doi.org/10.1016/j.jmgm.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  46. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586 

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hiller S, Kohl A, Fiorito F, Herrmann T, Wider G, Tschopp J et al (2003) NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure 11(10):1199–1205

    CAS  PubMed  Google Scholar 

  48. Chu LH, Gangopadhyay A, Dorfleutner A, Stehlik C (2015) An updated view on the structure and function of PYRIN domains. Apoptosis 20(2):157–173

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chavarría-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for Inflammasome activation by Anthrax lethal factor. PLoS Pathog 9(6):e1003452

    PubMed  PubMed Central  Google Scholar 

  50. Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE (2016) Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 Inflammasome activation. PLoS Pathog 12(12):e1006052

    PubMed  PubMed Central  Google Scholar 

  51. Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364(6435):eaau1330

    PubMed  PubMed Central  Google Scholar 

  52. Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Johnson DC et al (2019) N-terminal degradation activates the NLRP1B inflammasome. Science 364(6435):82–85

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al (2007) Reconstituted NALP1 Inflammasome reveals two-step mechanism of Caspase-1 activation. Mol Cell 25(5):713–724

    CAS  PubMed  Google Scholar 

  54. Lu A, Wu H (2015) Structural mechanisms of inflammasome assembly. FEBS J 282(3):435–444

    CAS  PubMed  Google Scholar 

  55. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420

    CAS  PubMed  Google Scholar 

  56. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:1–14. https://doi.org/10.1038/ncomms4209

    Article  CAS  Google Scholar 

  57. Dick MS, Sborgi L, Rühl S, Hiller S, Broz P (2016) ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 7:11929

  58. Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC et al (2018) Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem Biol 25(3):262–267.e5. https://doi.org/10.1016/j.chembiol.2017.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Vasconcelos NM, Vliegen G, Gonçalves A, De Hert E, Martín-Pérez R, Van Opdenbosch N et al (2019) DPP8/DPP9 inhibition elicits canonical Nlrp1b inflammasome hallmarks in murine macrophages. Life Sci Alliance 2(1):e201900313

    PubMed  PubMed Central  Google Scholar 

  60. Walsh MP, Duncan B, Larabee S, Krauss A, Davis JPE, Cui Y et al (2013) Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS One 8(3):e58860

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Okondo MC, Johnson DC, Sridharan R, Bin GE, Chui AJ, Wang MS et al (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 13(1):46–53. https://doi.org/10.1038/nchembio.2229

    Article  CAS  PubMed  Google Scholar 

  62. Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC et al (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 24(8):1151–1156. https://doi.org/10.1038/s41591-018-0082-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhong FL, Tan K-Y, Reversade B, Robinson K, Sobota RM, Reed JC et al (2018) Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem 293(49):18864–18878

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Armstrong R A (2014) A critical analysis of the ‘amyloid cascade hypothesis. Folia Neuropathol 3(3):211–225

    Google Scholar 

  65. Dahlgren KN, Manelli AM, Blaine Stine W, Baker LK, Krafft GA, Ladu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053

    CAS  PubMed  Google Scholar 

  66. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F et al (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55(5):443–452

    CAS  PubMed  Google Scholar 

  67. Sáez-Orellana F, Godoy PA, Bastidas CY, Silva-Grecchi T, Guzmán L, Aguayo LG et al (2016) ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons. Neuropharmacology 100:116–123

    PubMed  Google Scholar 

  68. Sáez-Orellana F, Fuentes-Fuentes MC, Godoy PA, Silva-Grecchi T, Panes JD, Guzmán L et al (2018) P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer’s disease. Neuropharmacology 128:366–378

    PubMed  Google Scholar 

  69. McLarnon JG, Ryu JK, Walker DG, Choi HB (2006) Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-β peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65:1090–1097

    CAS  PubMed  Google Scholar 

  70. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F et al (2015) K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 6(10):e1954

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zha QB, Wei HX, Li CG, Liang YD, Xu LH, Bai WJ et al (2016) ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front Immunol 7:597

    PubMed  PubMed Central  Google Scholar 

  74. Liao K-C, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81(2):570–579

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Elliott JM, Rouge L, Wiesmann C, Scheer JM (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284(10):6546–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74(2):457–471

    CAS  PubMed  Google Scholar 

  77. Srinivasan D (2004) Cell type-specific Interleukin-1 signaling in the CNS. J Neurosci 24(29):6482–6488

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK (2012) Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol 7(1):156–164

    PubMed  Google Scholar 

  79. Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y et al (2008) Interleukin-1β up-regulates TACE to enhance α-cleavage of APP in neurons: resulting decrease in Aβ production. J Neurochem 104(5):1387–1393

    CAS  PubMed  Google Scholar 

  80. Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF et al (2009) Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28:507–512

    CAS  PubMed  Google Scholar 

  81. Soiampornkul R, Tong L, Thangnipon W, Balazs R, Cotman CW (2008) Interleukin-1β interferes with signal transduction induced by neurotrophin-3 in cortical neurons. Brain Res 1188(1):189–197

    CAS  PubMed  Google Scholar 

  82. Kandel ER (2012) The molecular biology of memory: CAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al (2013) Sustained Interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE et al (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20(1):149–155

    PubMed  PubMed Central  Google Scholar 

  85. Dong H (2004) Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24(41):8950–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou J, Feng PF, Ting LW, Yi FJ, Shang J (2014) Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways. Cytokine 69(1):29–38. https://doi.org/10.1016/j.cyto.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  87. Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30(2):198–209

    CAS  PubMed  Google Scholar 

  88. Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 9:1–14

    Google Scholar 

  89. Ojala JO, Sutinen EM, Salminen A, Pirttilä T (2008) Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol 205(1–2):86–93. https://doi.org/10.1016/j.jneuroim.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  90. Yu JT, Tan L, Song JH, Sun YP, Chen W, Miao D et al (2009) Interleukin-18 promoter polymorphisms and risk of late onset Alzheimer’s disease. Brain Res 1253(5):169–175. https://doi.org/10.1016/j.brainres.2008.11.083

    Article  CAS  PubMed  Google Scholar 

  91. Segat L, Milanese M, Arosio B, Vergani C, Crovella S (2010) Lack of association between Interleukin-18 gene promoter polymorphisms and onset of Alzheimer’s disease. Neurobiol Aging 31(1):162–164

    CAS  PubMed  Google Scholar 

  92. Luo L, Li K, Wang X (2016) Relationship between the IL-18 gene polymorphisms and Alzheimer’s disease: a meta-analysis. Int J Clin Exp Med 9(11):22720–22728

    CAS  Google Scholar 

  93. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825

    CAS  PubMed  Google Scholar 

  94. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    CAS  PubMed  Google Scholar 

  96. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142. https://doi.org/10.1038/ni.1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507–514.e4. https://doi.org/10.1016/j.chembiol.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Noël A, Zhou L, Foveau B, Sjöström PJ, LeBlanc AC (2018) Differential susceptibility of striatal, hippocampal and cortical neurons to Caspase-6. Cell Death Differ 25:1319–1335. https://doi.org/10.1038/s41418-017-0043-x

    Google Scholar 

  99. Hogg MC, Mitchem MR, König H, Prehn JHM (2016) Caspase 6 has a protective role in SOD1 G93A transgenic mice. BBA - Mol Basis Dis 1862(6):1063–1073. https://doi.org/10.1016/j.bbadis.2016.03.006

    Article  CAS  Google Scholar 

  100. Wang XJ, Cao Q, Zhang Y, Su XD (2015) Activation and regulation of Caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55(1):553–572

    CAS  PubMed  Google Scholar 

  101. Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170(4):1200–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ramcharitar J, Afonso VM, Albrecht S, Bennett DA, LeBlanc AC (2013) Caspase-6 activity predicts lower episodic memory ability in aged individuals. Neurobiol Aging 34(7):1815–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Horowitz PM (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24(36):7895–7902

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D’Adamio L (1999) Alternative, non-secretase processing of Alzheimer’s β-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274(30):21011–21016

    CAS  PubMed  Google Scholar 

  105. Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA et al (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30(45):15019–15029

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Van De Craen M, De Jonghe C, Van Den Brande I, Declercq W, Van Gassen G, Van Criekinge W et al (1999) Identification of caspases that cleave presenilin-1 and presenilin-2: five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett 445(1):149–154

    PubMed  Google Scholar 

  107. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165(2):523–531. https://doi.org/10.1016/S0002-9440(10)63317-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114(1):121–130

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao H, Zhao W, Lok K, Wang Z, Yin M (2014) A synergic role of caspase-6 and caspase-3 in tau truncation at D421 induced by H2O2. Cell Mol Neurobiol 34(3):369–378

    CAS  PubMed  Google Scholar 

  110. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J Biol Chem 274(33):23426–23436

    CAS  PubMed  Google Scholar 

  111. Leblanc AC, Ramcharitar J, Afonso V, Hamel E, Bennett DA, Pakavathkumar P et al (2014) Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment. Cell Death Differ 21(5):696–706. https://doi.org/10.1038/cdd.2013.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harris PA, Duraiswami C, Fisher DT, Fornwald J, Hoffman SJ, Hofmann G et al (2015) High throughput screening identifies ATP-competitive inhibitors of the NLRP1 inflammasome. Bioorganic Med Chem Lett 25(14):2739–2743. https://doi.org/10.1016/j.bmcl.2015.05.032

    Article  CAS  Google Scholar 

  113. Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S et al (2018) NLRP3 Inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(3):1977–1987

    CAS  PubMed  Google Scholar 

  114. Jorfi M, D’Avanzo C, Tanzi RE, Kim DY, Irimia D (2018) Human neurospheroid arrays for in vitro studies of Alzheimer’s disease. Sci Rep 8(1):2450

    PubMed  PubMed Central  Google Scholar 

  115. Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23:2363–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21(7):941–951

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this work was from the Fundamental Research Grant Scheme (FRGS/1/2016/SKK08/IMU/03/1) by the Ministry of Higher Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook Yee Gan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, J.K.Y., Pickard, B.S., Chan, E.W.L. et al. The Role of Neuronal NLRP1 Inflammasome in Alzheimer’s Disease: Bringing Neurons into the Neuroinflammation Game. Mol Neurobiol 56, 7741–7753 (2019). https://doi.org/10.1007/s12035-019-1638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1638-7

Keywords

Navigation