Abstract
The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer’s disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
Similar content being viewed by others
References
Alzheimer’s Association (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13(4):325–373. https://doi.org/10.1016/j.jalz.2017.02.001
Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J (2018) Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat Rev Neurol 14(1):22–40. https://doi.org/10.1038/nrneurol.2017.162
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73(4):504–517
Cummings J, Lee G, Ritter A, Zhong K (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s Dement Transl Res Clin Interv 4:195–214. https://doi.org/10.1016/j.trci.2018.03.009
Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimer’s Dement 12(6):719–732. https://doi.org/10.1016/j.jalz.2016.02.010
Walters A, Phillips E, Zheng R, Biju M, Kuruvilla T (2016) Evidence for neuroinflammation in Alzheimer’s disease. Prog Neurol Psychiatry 20(5):25–31
Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247
Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97
Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E et al (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23. https://doi.org/10.1186/s13024-016-0088-1
Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B et al (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ 22(10):1676–1686
Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125(4):629–637
Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049
Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34
Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022
Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118
Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412
Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P (2005) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Rev 48(2):220–233
Griffiths MR, Gasque P, Neal JW (2010) The regulation of the CNS innate immune response is vital for the restoration of tissue homeostasis (repair) after acute brain injury: a brief review. Int J Inflam 2010:151097
Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122(4):1164–1171
Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci 29(3):185–194
Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4(1):1–13
Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S et al (2011) Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 25(1):59–76
Swardfager W, Lanctt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. https://doi.org/10.1016/j.biopsych.2010.06.012
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Publ Gr 14(3):133–150. https://doi.org/10.1038/nrneurol.2017.188
Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A (2008) Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer’s pathology. J Cell Mol Med 12(6a):2255–2262
Gold M, El Khoury J (2015) β-Amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin Immunopathol 37:607–611
Dansokho C, Heneka MT (2018) Neuroinflammatory responses in Alzheimer’s disease. J Neural Transm 125(5):771–779. https://doi.org/10.1007/s00702-017-1831-7
Tan MS, Yu JT, Jiang T, Zhu XC, Tan L (2013) The NLRP3 Inflammasome in Alzheimer’s disease. Mol Neurobiol 48(3):875–882. https://doi.org/10.1007/s12035-013-8475-x
Davis BK, Wen H, Ting JPY (2011) The Inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29(1):707–735
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A et al (2012) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678
Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Invest 127(9):33–35
Adamczak SE, De Rivero Vaccari JP, Dale G, Brand FJ, Nonner D, Bullock M et al (2014) Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 34(4):621–629
Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD et al (2014) Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 5(8):e1382
Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2012) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord 26(3):277–281
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430
Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426
Chavarría-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265(1):22–34
Sastalla I, Crown D, Masters SL, McKenzie A, Leppla SH, Moayeri M (2013) Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genomics 14(1):1–10
Yu CH, Moecking J, Geyer M, Masters SL (2018) Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J Mol Biol 430(2):142–152. https://doi.org/10.1016/j.jmb.2017.07.012
Inohara N, Chamaillard M, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383
Kersse K, Bertrand MJM, Lamkanfi M, Vandenabeele P (2011) NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 22(5–6):257–276. https://doi.org/10.1016/j.cytogfr.2011.09.003
D’Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC (2011) CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One 6(11):e27396
Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswamis C et al (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287(30):25030–25037
Maharana J (2018) Elucidating the interfaces involved in CARD-CARD interactions mediated by NLRP1 and Caspase-1 using molecular dynamics simulation. J Mol Graph Model 80:7–14. https://doi.org/10.1016/j.jmgm.2017.12.016
Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586
Hiller S, Kohl A, Fiorito F, Herrmann T, Wider G, Tschopp J et al (2003) NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure 11(10):1199–1205
Chu LH, Gangopadhyay A, Dorfleutner A, Stehlik C (2015) An updated view on the structure and function of PYRIN domains. Apoptosis 20(2):157–173
Chavarría-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for Inflammasome activation by Anthrax lethal factor. PLoS Pathog 9(6):e1003452
Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE (2016) Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 Inflammasome activation. PLoS Pathog 12(12):e1006052
Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364(6435):eaau1330
Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR, Johnson DC et al (2019) N-terminal degradation activates the NLRP1B inflammasome. Science 364(6435):82–85
Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al (2007) Reconstituted NALP1 Inflammasome reveals two-step mechanism of Caspase-1 activation. Mol Cell 25(5):713–724
Lu A, Wu H (2015) Structural mechanisms of inflammasome assembly. FEBS J 282(3):435–444
Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420
Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:1–14. https://doi.org/10.1038/ncomms4209
Dick MS, Sborgi L, Rühl S, Hiller S, Broz P (2016) ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 7:11929
Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC et al (2018) Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem Biol 25(3):262–267.e5. https://doi.org/10.1016/j.chembiol.2017.12.013
de Vasconcelos NM, Vliegen G, Gonçalves A, De Hert E, Martín-Pérez R, Van Opdenbosch N et al (2019) DPP8/DPP9 inhibition elicits canonical Nlrp1b inflammasome hallmarks in murine macrophages. Life Sci Alliance 2(1):e201900313
Walsh MP, Duncan B, Larabee S, Krauss A, Davis JPE, Cui Y et al (2013) Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS One 8(3):e58860
Okondo MC, Johnson DC, Sridharan R, Bin GE, Chui AJ, Wang MS et al (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 13(1):46–53. https://doi.org/10.1038/nchembio.2229
Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC et al (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 24(8):1151–1156. https://doi.org/10.1038/s41591-018-0082-y
Zhong FL, Tan K-Y, Reversade B, Robinson K, Sobota RM, Reed JC et al (2018) Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem 293(49):18864–18878
Armstrong R A (2014) A critical analysis of the ‘amyloid cascade hypothesis. Folia Neuropathol 3(3):211–225
Dahlgren KN, Manelli AM, Blaine Stine W, Baker LK, Krafft GA, Ladu MJ (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277(35):32046–32053
Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F et al (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55(5):443–452
Sáez-Orellana F, Godoy PA, Bastidas CY, Silva-Grecchi T, Guzmán L, Aguayo LG et al (2016) ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons. Neuropharmacology 100:116–123
Sáez-Orellana F, Fuentes-Fuentes MC, Godoy PA, Silva-Grecchi T, Panes JD, Guzmán L et al (2018) P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer’s disease. Neuropharmacology 128:366–378
McLarnon JG, Ryu JK, Walker DG, Choi HB (2006) Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-β peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol 65:1090–1097
Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082
Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E et al (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151
Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F et al (2015) K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 6(10):e1954
Zha QB, Wei HX, Li CG, Liang YD, Xu LH, Bai WJ et al (2016) ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front Immunol 7:597
Liao K-C, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81(2):570–579
Elliott JM, Rouge L, Wiesmann C, Scheer JM (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284(10):6546–6553
Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74(2):457–471
Srinivasan D (2004) Cell type-specific Interleukin-1 signaling in the CNS. J Neurosci 24(29):6482–6488
Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O’Banion MK (2012) Chronic IL-1β-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer’s disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol 7(1):156–164
Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y et al (2008) Interleukin-1β up-regulates TACE to enhance α-cleavage of APP in neurons: resulting decrease in Aβ production. J Neurochem 104(5):1387–1393
Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF et al (2009) Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28:507–512
Soiampornkul R, Tong L, Thangnipon W, Balazs R, Cotman CW (2008) Interleukin-1β interferes with signal transduction induced by neurotrophin-3 in cortical neurons. Brain Res 1188(1):189–197
Kandel ER (2012) The molecular biology of memory: CAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14
Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al (2013) Sustained Interleukin-1 overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064
Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE et al (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20(1):149–155
Dong H (2004) Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24(41):8950–8960
Zhou J, Feng PF, Ting LW, Yi FJ, Shang J (2014) Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways. Cytokine 69(1):29–38. https://doi.org/10.1016/j.cyto.2014.05.003
Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30(2):198–209
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 9:1–14
Ojala JO, Sutinen EM, Salminen A, Pirttilä T (2008) Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol 205(1–2):86–93. https://doi.org/10.1016/j.jneuroim.2008.09.012
Yu JT, Tan L, Song JH, Sun YP, Chen W, Miao D et al (2009) Interleukin-18 promoter polymorphisms and risk of late onset Alzheimer’s disease. Brain Res 1253(5):169–175. https://doi.org/10.1016/j.brainres.2008.11.083
Segat L, Milanese M, Arosio B, Vergani C, Crovella S (2010) Lack of association between Interleukin-18 gene promoter polymorphisms and onset of Alzheimer’s disease. Neurobiol Aging 31(1):162–164
Luo L, Li K, Wang X (2016) Relationship between the IL-18 gene polymorphisms and Alzheimer’s disease: a meta-analysis. Int J Clin Exp Med 9(11):22720–22728
Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825
He WT, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665
Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11(12):1136–1142. https://doi.org/10.1038/ni.1960
Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507–514.e4. https://doi.org/10.1016/j.chembiol.2017.03.009
Noël A, Zhou L, Foveau B, Sjöström PJ, LeBlanc AC (2018) Differential susceptibility of striatal, hippocampal and cortical neurons to Caspase-6. Cell Death Differ 25:1319–1335. https://doi.org/10.1038/s41418-017-0043-x
Hogg MC, Mitchem MR, König H, Prehn JHM (2016) Caspase 6 has a protective role in SOD1 G93A transgenic mice. BBA - Mol Basis Dis 1862(6):1063–1073. https://doi.org/10.1016/j.bbadis.2016.03.006
Wang XJ, Cao Q, Zhang Y, Su XD (2015) Activation and regulation of Caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55(1):553–572
Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC (2007) Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 170(4):1200–1209
Ramcharitar J, Afonso VM, Albrecht S, Bennett DA, LeBlanc AC (2013) Caspase-6 activity predicts lower episodic memory ability in aged individuals. Neurobiol Aging 34(7):1815–1824
Horowitz PM (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24(36):7895–7902
Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D’Adamio L (1999) Alternative, non-secretase processing of Alzheimer’s β-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274(30):21011–21016
Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA et al (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30(45):15019–15029
Van De Craen M, De Jonghe C, Van Den Brande I, Declercq W, Van Gassen G, Van Criekinge W et al (1999) Identification of caspases that cleave presenilin-1 and presenilin-2: five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett 445(1):149–154
Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165(2):523–531. https://doi.org/10.1016/S0002-9440(10)63317-2
Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114(1):121–130
Zhao H, Zhao W, Lok K, Wang Z, Yin M (2014) A synergic role of caspase-6 and caspase-3 in tau truncation at D421 induced by H2O2. Cell Mol Neurobiol 34(3):369–378
LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J Biol Chem 274(33):23426–23436
Leblanc AC, Ramcharitar J, Afonso V, Hamel E, Bennett DA, Pakavathkumar P et al (2014) Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment. Cell Death Differ 21(5):696–706. https://doi.org/10.1038/cdd.2013.194
Harris PA, Duraiswami C, Fisher DT, Fornwald J, Hoffman SJ, Hofmann G et al (2015) High throughput screening identifies ATP-competitive inhibitors of the NLRP1 inflammasome. Bioorganic Med Chem Lett 25(14):2739–2743. https://doi.org/10.1016/j.bmcl.2015.05.032
Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S et al (2018) NLRP3 Inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol 55(3):1977–1987
Jorfi M, D’Avanzo C, Tanzi RE, Kim DY, Irimia D (2018) Human neurospheroid arrays for in vitro studies of Alzheimer’s disease. Sci Rep 8(1):2450
Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23:2363–2374
Park J, Wetzel I, Marriott I, Dréau D, D’Avanzo C, Kim DY et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21(7):941–951
Acknowledgments
Funding for this work was from the Fundamental Research Grant Scheme (FRGS/1/2016/SKK08/IMU/03/1) by the Ministry of Higher Education of Malaysia.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yap, J.K.Y., Pickard, B.S., Chan, E.W.L. et al. The Role of Neuronal NLRP1 Inflammasome in Alzheimer’s Disease: Bringing Neurons into the Neuroinflammation Game. Mol Neurobiol 56, 7741–7753 (2019). https://doi.org/10.1007/s12035-019-1638-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-019-1638-7