Skip to main content

Advertisement

Role of Rho Kinase Inhibition in the Protective Effect of Fasudil and Simvastatin Against 3-Nitropropionic Acid-Induced Striatal Neurodegeneration and Mitochondrial Dysfunction in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

3-Nitropropionic acid (3-NP)-induced neurotoxicity is an experimental model which mimics the pathology and motor abnormalities seen in Huntington’s disease (HD) in human. The present investigation was directed to estimate the role of rho kinase (ROCK) inhibition in the possible protective effect of fasudil and simvastatin in 3-NP-induced striatal neurodegeneration in rats. Animals were injected s.c. with 3-NP (20 mg/kg/day) for 1 week with or without administration of fasudil (10 mg/kg/day, p.o.) or simvastatin (20 mg/kg/day, p.o.). At the end of experiment, motor and behavioral abnormalities were evaluated. Animals were then sacrificed for measurement of mitochondrial membrane potential as well as succinate dehydrogenase (SDH) and caspase-3 activities in striatum. Moreover, tumor necrosis factor-alpha (TNF-α) level and protein expressions of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ROCK, phosphorylated-Akt (p-Akt), endothelial and inducible nitric oxide synthase (eNOS and iNOS), Bax, and Bcl-2 were estimated. Finally, histological changes as demonstrated by striatum injury score, glial activation, and percentage of altered mitochondria were assessed. Both fasudil and simvastatin effectively inhibited 3-NP-induced behavioral, biochemical, and histological changes through inhibition of ROCK activity. However, fasudil provided more amelioration in histological changes, mitochondrial membrane potential and SDH activity in addition to p-Akt and PGC-1α protein expressions. The present study highlights a significant role of ROCK/p-Akt/eNOS pathway in the protective effects of fasudil and simvastatin on neurotoxicity and mitochondrial dysfunction induced by 3-NP in rats. Thus, specific inhibition of ROCK may be considered a promising new approach in the management of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ludolph AC, He F, Spencer PS et al (1991) 3-Nitropropionic acid exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    Article  CAS  PubMed  Google Scholar 

  2. Brouillet E, Jacquard C, Bizat N et al (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540

    Article  CAS  PubMed  Google Scholar 

  3. Rosenstock TR, Duarte AI, Rego AC (2010) Mitochondrial-associated metabolic changes and neurodegeneration in Huntington’s disease - from clinical features to the bench. Curr Drug Targets 11:1218–1236

    Article  CAS  PubMed  Google Scholar 

  4. Brouillet E (2014) The 3-NP model of striatal neurodegeneration. Curr Protoc Neurosci 67:9.48.1–9.48.14

    Article  Google Scholar 

  5. Borlongan CV, Nishino H, Sanberg PR (1997) Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the neuropathology of Huntington's disease: a speculative explanation. Neurosci Res 29:185–189

    Article  Google Scholar 

  6. Ding J, Li QY, Wang X et al (2010) Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice. J Neurochem 114(6):1619–1629

    Article  CAS  PubMed  Google Scholar 

  7. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    Article  CAS  PubMed  Google Scholar 

  8. Labandeira-Garcia JL, Rodríguez-Perez AI, Villar-Cheda B et al. (2014) Rho Kinase and Dopaminergic Degeneration: a promising therapeutic target for parkinson’s disease. Neuroscientist [Epub ahead of print]

  9. Pollitt SK, Pallos J, Shao J et al (2003) A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40:685–694

    Article  CAS  PubMed  Google Scholar 

  10. Wolfrum S, Dendorfer A, Rikitake Y et al (2004) Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 24:1842–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Omeis I, Jayson NA, Murali R et al (2008) Treatment of cerebral vasospasm with biocompatible controlled release systems for intracranial drug delivery. Neurosurgery 63(6):1011–1019

    Article  PubMed  Google Scholar 

  12. Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20(2):242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo R, Liu B, Zhou S et al (2013) The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress. Biomed Res Int 2013:430791

    PubMed  PubMed Central  Google Scholar 

  14. Zhao J, Zhou D, Guo J et al (2011) Fasudil Aneurysmal Subarachnoid Hemorrhage Study Group. Efficacy and safety of fasudil in patients with subarachnoid hemorrhage: final results of a randomized trial of fasudil versus nimodipine. Neurol Med Chir (Tokyo) 51(10):679–683

    Article  Google Scholar 

  15. Li Q, Huang XJ, He W et al (2009) Neuroprotective potential of fasudil mesylate in brain ischemia-reperfusion injury of rats. Cell Mol Neurobiol 29:169–180

    Article  CAS  PubMed  Google Scholar 

  16. Van der Most PJ, Dolga AM, Nijholt IM et al (2009) Statins: mechanisms of neuroprotection. Prog Neurobiol 88(1):64–75

    Article  PubMed  Google Scholar 

  17. Rikitake Y, Liao JK (2005) Rho GTPases, statins, and nitric oxide. Circ Res 97(12):1232–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang D, Knight RA, Han Y et al (2013) Statins protect the blood brain barrier acutely after experimental intracerebral hemorrhage. J Behav Brain Sci 3(1):100–106

    Article  CAS  PubMed  Google Scholar 

  19. Beal MF, Brouillet E, Jenkins BG et al (1993) Neurochemical and Histologic characterization of Striatal excitotoxin lesions produced by mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  PubMed  Google Scholar 

  20. Jiang BH, Tawara S, Abe K et al (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 49(2):85–89

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Ji Z, Tang D et al (2013) Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep 40(2):819–827

    Article  CAS  PubMed  Google Scholar 

  22. Mittoux V, Ouary S, Monville C et al (2002) Corticostriatopallidal neuroprotection by adenovirus-mediated Ciliary Neurotrophic factor gene transfer in a rat model of progressive Striatal degeneration. J Neurosci 22:4478–4486

    CAS  PubMed  Google Scholar 

  23. Bantubungi K, Jacquard C, Greco A et al (2005) Minocycline in phenotypic models of Huntington’s disease. Neurobiol Dis 18:206–217

    Article  CAS  PubMed  Google Scholar 

  24. Moreira EL, Rial D, Duarte FS et al (2010) Central nervous system activity of the proanthocyanidin-rich fraction obtained from croton celtidifolius in rats. J Pharm Pharmacol 62:1061–1068

    Article  CAS  PubMed  Google Scholar 

  25. Avila DS, Colle D, Gubert P et al (2010) A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 115:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vis JC, Verbeek MM, De Waal RMW et al (1999) 3- nitropropionic acid induces a spectrum of Huntington's disease-like neuropathology in rat striatum. Neuropathol Appl Neurobiol 25:513–521

    Article  CAS  PubMed  Google Scholar 

  27. Shear DA, Dong J, Gundy CD et al (1998) Comparison of Intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease. Prog Neuro-Psychopharmacol Biol Psychiatry 22:1217–1240

    Article  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Sharman EH, Bondy SC (2001) Effects of age and dietary antioxidants on cerebral electron transport chain activity. Neurobiol Aging 22:629–634

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed LA, Shehata NI, Abdelkader NF et al (2014) Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS One 9(10), e108889

    Article  PubMed  PubMed Central  Google Scholar 

  31. Woodruff TM, Crane JW, Proctor LM et al (2006) Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J 20(9):1407–1417

    Article  CAS  PubMed  Google Scholar 

  32. Vega-Núñez E, Alvarez AM, Menéndez-Hurtado A et al (1997) Neuronal mitochondrial morphology and transmembrane potential are severely altered by hypothyroidism during rat brain development. Endocrinology 138(9):3771–3778

    Article  PubMed  Google Scholar 

  33. Ouary S, Bizat N, Altairac S et al (2000) Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97:521–530

    Article  CAS  PubMed  Google Scholar 

  34. Shear DA, Haik KL, Dunbar GL (2000) Creatine reduces 3-nitropropionic-acid-induced cognitive and motor abnormalities in rats. Neuroreport 11(9):1833–1837

    Article  CAS  PubMed  Google Scholar 

  35. Keene CD, Rodrigues CM, Eich T et al (2001) A bile acid protects against motor and cognitive deficits and reduces Striatal degeneration in the 3-nitropropionic acid model of Huntington's disease. Exp Neurol 171(2):351–360

    Article  CAS  PubMed  Google Scholar 

  36. Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington's disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164(2):644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forster MJ, Dubey A, Dawson KM et al (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93(10):4765–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandavilli BS, Boldogh I, Van Houten B (2005) 3-nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Brain Res Mol Brain Res 133(2):215–223

    Article  CAS  PubMed  Google Scholar 

  39. Maciel EN, Kowaltowski AJ, Schwalm FD et al (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90:1025–1035

    Article  CAS  PubMed  Google Scholar 

  40. Wani TA, Al-Omara MA, Zargarb S (2011) Huntington disease: current advances in pathogenesis and recent therapeutic strategies. Int J Pharm Sci Drug Res 3(2):69–79

    CAS  Google Scholar 

  41. Liang H, Ward WF (2006) PGC-1 alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  42. Cui L, Jeong H, Borovecki F et al (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  43. Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC 1alpha in Huntington’s disease neurodegeneration. Cell Metab 4:349–362

    Article  CAS  PubMed  Google Scholar 

  44. Yadav A, Agarwal S, Tiwari SK et al (2014) Mitochondria: prospective targets for neuroprotection in Parkinson's disease. Curr Pharm Des 20(35):5558–5573

    Article  CAS  PubMed  Google Scholar 

  45. Tönges L, Frank T, Tatenhorst L et al (2012) Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease. Brain 135:3355–3370

    Article  PubMed  PubMed Central  Google Scholar 

  46. Selley ML (2005) Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res 1037:1–6

  47. Bouitbir J, Charles AL, Echaniz-Laguna A et al (2012) Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J 33(11):1397–1407

    Article  CAS  PubMed  Google Scholar 

  48. Impellizzeri D, Mazzon E, Paterniti I et al (2012) Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J Pharmacol Exp Ther 343(1):21–33

    Article  CAS  PubMed  Google Scholar 

  49. Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325:273–284

    Article  CAS  PubMed  Google Scholar 

  50. Zacco A, Togo J, Spence K et al (2003) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 23:11104–11111

    CAS  PubMed  Google Scholar 

  51. Colin E, Regulier E, Perrin V et al (2005) Akt is altered in an animal model of Huntington’s disease and in patients. Eur J Neurosci 21:1478–1488

    Article  PubMed  Google Scholar 

  52. Humbert S, Bryson EA, Cordelieres FP et al (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev Cell 2:831–837

    Article  CAS  PubMed  Google Scholar 

  53. Rangone H, Pardo R, Colin E et al (2005) Phosphorylation of arfaptin 2 at Ser260 by Akt inhibits polyQ-huntingtin-induced toxicity by rescuing proteasome impairment. J Biol Chem 280:22021–22028

    Article  CAS  PubMed  Google Scholar 

  54. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273(37):24266–24271

    Article  CAS  PubMed  Google Scholar 

  55. Endres M, Laufs U, Huang Z et al (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95:8880–8885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beckman JS, Chen J, Ischiropoulos H et al (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–240

    Article  CAS  PubMed  Google Scholar 

  57. Vodovotz Y, Lucia MS, Flanders KC et al (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease. J Exp Med 184:1425–1433

    Article  CAS  PubMed  Google Scholar 

  58. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139

    Article  CAS  PubMed  Google Scholar 

  59. Hanna DM, Tadros MG, Khalifa AE (2015) ADIOL protects against 3-NP-induced neurotoxicity in rats: Possible impact of its anti-oxidant, anti-inflammatory and anti-apoptotic actions. Prog Neuropsychopharmacol Biol Psychiatry 60:36–51

    Article  CAS  PubMed  Google Scholar 

  60. Harbrecht BG, Wu B, Watkins SC et al (1997) Inhibition of nitric oxide synthesis during severe shock but not after resuscitation increases hepatic injury and neutrophil accumulation in hemorrhaged rats. Shock 8:415–421

    Article  CAS  PubMed  Google Scholar 

  61. Menge T, Hartung HP, Stuve O (2005) Statins--a cure-all for the brain? Nat Rev Neurosci 6:325–331

    Article  CAS  PubMed  Google Scholar 

  62. He Y, Xu H, Liang L et al (2008) Antiinflammatory effect of Rho kinase blockade via inhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum 58:3366–3376

    Article  CAS  PubMed  Google Scholar 

  63. Cordle A, Landreth G (2005) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate β-amyloid-induced microglial inflammatory responses. J Neurosci 25:299–307

    Article  CAS  PubMed  Google Scholar 

  64. Del Re DP, Miyamoto S, Brown JH (2007) RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem 282(11):8069–8078

    Article  PubMed  Google Scholar 

  65. Nomura Y (2004) Neuronal apoptosis and protection: effects of nitric oxide and endoplasmic reticulum-related proteins. Biol Pharm Bull 27:961–963

    Article  CAS  PubMed  Google Scholar 

  66. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu J, Li J, Hu H et al (2012) Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain. Cell Mol Neurobiol 32(7):1187–1197

    Article  CAS  PubMed  Google Scholar 

  69. Street CA, Bryan BA (2011) Rho kinase proteins--pleiotropic modulators of cell survival and apoptosis. Anticancer Res 31(11):3645–3657

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kelly S, Zhao H, Hua Sun G et al (2004) Glycogen synthase kinase-3 beta inhibitor Chir025 reduces neuronal death resulting from oxygen–glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol 188:378–386

    Article  CAS  PubMed  Google Scholar 

  71. Hunt WT, Salins PB, Anderson CM et al (2010) Neuroprotective role of statins in Alzheimer’s disease: anti-apoptotic signaling. Open Neurosci J 4:13–22

    Article  CAS  Google Scholar 

  72. Franke C, Noldner M, Abdel-Kader R et al (2007) Bcl-2 upregulation and neuroprotection in guinea pig brain following chronic simvastatin treatment. Neurobiol Dis 25:438–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamiaa A. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, L.A., Darwish, H.A., Abdelsalam, R.M. et al. Role of Rho Kinase Inhibition in the Protective Effect of Fasudil and Simvastatin Against 3-Nitropropionic Acid-Induced Striatal Neurodegeneration and Mitochondrial Dysfunction in Rats. Mol Neurobiol 53, 3927–3938 (2016). https://doi.org/10.1007/s12035-015-9303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9303-2

Keywords