Skip to main content

Advertisement

Log in

Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azzazy, H. M., & Highsmith, W. E., Jr. (2002). Phage display technology: Clinical applications and recent innovations. Clinical Biochemistry, 35(6), 425–445.

    Article  CAS  PubMed  Google Scholar 

  3. Foglizzo, V., & Marchiò, S. (2021). Bacteriophages as therapeutic and diagnostic vehicles in cancer. Pharmaceuticals (Basel). https://doi.org/10.3390/ph14020161

    Article  PubMed  Google Scholar 

  4. Wu, C. H., Liu, I. J., Lu, R. M., & Wu, H. C. (2016). Advancement and applications of peptide phage display technology in biomedical science. Journal of Biomedical Science, 23, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smith, G. P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 228(4705), 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  6. Parmley, S. F., & Smith, G. P. (1988). Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene, 73(2), 305–318.

    Article  CAS  PubMed  Google Scholar 

  7. Barderas, R., & Benito-Peña, E. (2019). The 2018 Nobel Prize in Chemistry: Phage display of peptides and antibodies. Analytical and Bioanalytical Chemistry, 411(12), 2475–2479.

    Article  CAS  PubMed  Google Scholar 

  8. Scott, J. K., & Smith, G. P. (1990). Searching for peptide ligands with an epitope library. Science, 249(4967), 386–390.

    Article  CAS  PubMed  Google Scholar 

  9. Devlin, J. J., Panganiban, L. C., & Devlin, P. E. (1990). Random peptide libraries: A source of specific protein binding molecules. Science, 249(4967), 404–406.

    Article  CAS  PubMed  Google Scholar 

  10. McCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: Filamentous phage displaying antibody variable domains. Nature, 348(6301), 552–554.

    Article  CAS  PubMed  Google Scholar 

  11. Willats, W. G. (2002). Phage display: Practicalities and prospects. Plant Molecular Biology, 50(6), 837–854.

    Article  CAS  PubMed  Google Scholar 

  12. Sioud, M. (2019). Phage display libraries: From binders to targeted drug delivery and human therapeutics. Molecular Biotechnology, 61(4), 286–303.

    Article  CAS  PubMed  Google Scholar 

  13. Marintcheva, B. (2018). Harnessing the power of viruses. Academic Press.

    Google Scholar 

  14. Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L., & Węgrzyn, G. (2022). Phage display and other peptide display technologies. FEMS Microbiology Reviews. https://doi.org/10.1093/femsre/fuab052

    Article  PubMed  Google Scholar 

  15. Alfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. A., Jones, M. L., Mahler, S. M., & Hashem, A. M. (2020). Phage display derived monoclonal antibodies: From bench to bedside. Frontiers in Immunology, 11, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Omidfar, K., & Daneshpour, M. (2015). Advances in phage display technology for drug discovery. Expert Opinion on Drug Discovery, 10(6), 651–669.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Y., Wang, Q., Jin, Y., Li, Y., Nie, C., Huang, P., Li, Z., Zhang, B., Su, Z., Hong, A., & Chen, X. (2018). Discovery and characterization of a high-affinity small peptide ligand, H1, targeting FGFR2IIIc for skin wound healing. Cellular Physiology and Biochemistry, 49(3), 1033–1048.

    Article  PubMed  Google Scholar 

  18. Kim, S., Kim, D., Jung, H. H., Lee, I. H., Kim, J. I., Suh, J. Y., & Jon, S. (2012). Bio-inspired design and potential biomedical applications of a novel class of high-affinity peptides. Angewandte Chemie (International ed. in English), 51(8), 1890–1894.

    Article  CAS  PubMed  Google Scholar 

  19. Sun, J., Zhang, C., Liu, G., Liu, H., Zhou, C., Lu, Y., Zhou, C., Yuan, L., & Li, X. (2012). A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clinical & Experimental Metastasis, 29(3), 185–196.

    Article  Google Scholar 

  20. Pleiko, K., Põšnograjeva, K., Haugas, M., Paiste, P., Tobi, A., Kurm, K., Riekstina, U., & Teesalu, T. (2021). In vivo phage display: Identification of organ-specific peptides using deep sequencing and differential profiling across tissues. Nucleic Acids Research, 49(7), e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ludtke, J. J., Sololoff, A. V., Wong, S. C., Zhang, G., & Wolff, J. A. (2007). In vivo selection and validation of liver-specific ligands using a new T7 phage peptide display system. Drug Delivery, 14(6), 357–369.

    Article  CAS  PubMed  Google Scholar 

  22. Gregorc, V., Santoro, A., Bennicelli, E., Punt, C. J., Citterio, G., Timmer-Bonte, J. N., Caligaris Cappio, F., Lambiase, A., Bordignon, C., & van Herpen, C. M. (2009). Phase Ib study of NGR-hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. British Journal of Cancer, 101(2), 219–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bábíčková, J., Tóthová, Ľ, Boor, P., & Celec, P. (2013). In vivo phage display–a discovery tool in molecular biomedicine. Biotechnology Advances, 31(8), 1247–1259.

    Article  PubMed  Google Scholar 

  24. Sørensen, M. D., & Kristensen, P. (2011). Selection of antibodies against a single rare cell present in a heterogeneous population using phage display. Nature Protocols, 6(4), 509–522.

    Article  PubMed  Google Scholar 

  25. Arap, W., Kolonin, M. G., Trepel, M., Lahdenranta, J., Cardó-Vila, M., Giordano, R. J., Mintz, P. J., Ardelt, P. U., Yao, V. J., Vidal, C. I., Chen, L., Flamm, A., Valtanen, H., Weavind, L. M., Hicks, M. E., Pollock, R. E., Botz, G. H., Bucana, C. D., Koivunen, E., … Pasqualini, R. (2002). Steps toward mapping the human vasculature by phage display. Nature Medicine, 8(2), 121–127.

    Article  CAS  PubMed  Google Scholar 

  26. Hess, K. L., & Jewell, C. M. (2020). Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med, 5(1), e10142.

    Article  PubMed  Google Scholar 

  27. Sahin, D., Taflan, S. O., Yartas, G., Ashktorab, H., & Smoot, D. T. (2018). Screening and identification of peptides specifically targeted to gastric cancer cells from a phage display peptide library. Asian Pacific Journal of Cancer Prevention, 19(4), 927–932.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules. https://doi.org/10.3390/molecules26195905

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, C., Li, J., Xu, Y., Zhan, Y., Li, Y., Song, T., Zheng, J., & Yang, H. (2021). Application of phage-displayed peptides in tumor imaging diagnosis and targeting therapy. International Journal of Peptide Research and Therapeutics, 27(1), 587–595.

    Article  CAS  PubMed  Google Scholar 

  30. Gallo, E., Kelil, A., Bayliss, P. E., Jeganathan, A., Egorova, O., Ploder, L., Adams, J. A., Giblin, P., & Sidhu, S. S. (2020). In situ antibody phage display yields optimal inhibitors of integrin α11/β1. MAbs, 12(1), 1717265.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ferreira, D., Silva, A. P., Nobrega, F. L., Martins, I. M., Barbosa-Matos, C., Granja, S., Martins, S. F., Baltazar, F., & Rodrigues, L. R. (2019). Rational Identification of a colorectal cancer targeting peptide through phage display. Science and Reports, 9(1), 3958.

    Article  Google Scholar 

  32. Lee, J. H., Kim, J. W., Yang, H. R., Song, S. W., Lee, S. J., Jeon, Y., Ju, A., Lee, N., Kim, M. G., Kim, M., Hwang, K., Yoon, J. H., Shim, H., & Lee, S. (2022). A fully-human antibody specifically targeting a membrane-bound fragment of CADM1 potentiates the T Cell-mediated death of human small-cell lung cancer cells. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23136895

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rahbarnia, L., Farajnia, S., Babaei, H., Majidi, J., Dariushnejad, H., & Hosseini, M. K. (2016). Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers. Immunology Letters, 180, 31–38.

    Article  CAS  PubMed  Google Scholar 

  34. Saw, P. E., & Song, E. W. (2019). Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein & Cell, 10(11), 787–807.

    Article  Google Scholar 

  35. Aloisio, A., Nisticò, N., Mimmi, S., Maisano, D., Vecchio, E., Fiume, G., Iaccino, E., & Quinto, I. (2021). Phage-displayed peptides for targeting tyrosine kinase membrane receptors in cancer therapy. Viruses. https://doi.org/10.3390/v13040649

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ju, M. S., Ahn, H. M., Han, S. G., Ko, S., Na, J. H., Jo, M., Lim, C. S., Ko, B. J., Yu, Y. G., Lee, W. K., Kim, Y. J., & Jung, S. T. (2021). A human antibody against human endothelin receptor type A that exhibits antitumor potency. Experimental & Molecular Medicine, 53(9), 1437–1448.

    Article  CAS  Google Scholar 

  37. Ren, H., Li, J., Zhang, N., Hu, L. A., Ma, Y., Tagari, P., Xu, J., & Zhang, M. Y. (2020). Function-based high-throughput screening for antibody antagonists and agonists against G protein-coupled receptors. Communications Biology, 3(1), 146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scott, M. J., Jowett, A., Orecchia, M., Ertl, P., Ouro-Gnao, L., Ticehurst, J., Gower, D., Yates, J., Poulton, K., Harris, C., Mullin, M. J., Smith, K. J., Lewis, A. P., Barton, N., Washburn, M. L., & de Wildt, R. (2020). Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs, 12(1), 1755069.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hutchings, C. J., Colussi, P., & Clark, T. G. (2019). Ion channels as therapeutic antibody targets. MAbs, 11(2), 265–296.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y., Li, C., Lu, Y., Liu, C., & Yang, W. (2022). Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Frontiers in Immunology, 13, 1016817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giraldo, N. A., Sanchez-Salas, R., Peske, J. D., Vano, Y., Becht, E., Petitprez, F., Validire, P., Ingels, A., Cathelineau, X., Fridman, W. H., & Sautès-Fridman, C. (2019). The clinical role of the TME in solid cancer. British Journal of Cancer, 120(1), 45–53.

    Article  PubMed  Google Scholar 

  42. Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 221, 107753.

    Article  CAS  Google Scholar 

  43. Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting tumor microenvironment for cancer therapy. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20040840

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sumphanapai, T., Chester, K., Sawatnatee, S., Yeung, J., & Yamabhai, M. (2022). Targeting acute myeloid cell surface using a recombinant antibody isolated from whole-cell biopanning of a phage display human scFv antibody library. Medical Oncology, 39(12), 205.

    Article  CAS  PubMed  Google Scholar 

  45. Weber, T., Pscherer, S., Gamerdinger, U., Teigler-Schlegel, A., Rutz, N., Blau, W., Rummel, M., Gattenlöhner, S., & Tur, M. K. (2021). Parallel evaluation of cell-based phage display panning strategies: Optimized selection and depletion steps result in AML blast-binding consensus antibodies. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2021.12407

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xia, L., Teng, Q., Chen, Q., & Zhang, F. (2020). Preparation and characterization of Anti-GPC3 nanobody against hepatocellular carcinoma. International Journal of Nanomedicine, 15, 2197–2205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nonaka, M., Mabashi-Asazuma, H., Jarvis, D. L., Yamasaki, K., Akama, T. O., Nagaoka, M., Sasai, T., Kimura-Takagi, I., Suwa, Y., Yaegashi, T., Huang, C. T., Nishizawa-Harada, C., & Fukuda, M. N. (2021). Development of an orally-administrable tumor vasculature-targeting therapeutic using annexin A1-binding D-peptides. PLoS ONE, 16(1), e0241157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Staquicini, F. I., Hajitou, A., Driessen, W. H., Proneth, B., Cardó-Vila, M., Staquicini, D. I., Markosian, C., Hoh, M., Cortez, M., Hooda-Nehra, A., Jaloudi, M., Silva, I. T., Buttura, J., Nunes, D. N., Dias-Neto, E., Eckhardt, B., Ruiz-Ramírez, J., Dogra, P., Wang, Z., … Pasqualini, R. (2021). Targeting a cell surface vitamin D receptor on tumor-associated macrophages in triple-negative breast cancer. eLife, 10, e65145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nadal, L., Peissert, F., Elsayed, A., Weiss, T., Look, T., Weller, M., Piro, G., Carbone, C., Tortora, G., Matasci, M., Favalli, N., Corbellari, R., Nitto, C. D., Prodi, E., Libbra, C., Galeazzi, S., Carotenuto, C., Halin, C., Puca, E., … Luca, R. D. (2022). 1093 A novel IL12-based immunocytokine targeting fibroblast activation protein (FAP) for the treatment of cancer. Journal for ImmunoTherapy of Cancer, 10(Suppl 2), A1136–A1136.

    Google Scholar 

  50. Mullen, L. M., Nair, S. P., Ward, J. M., Rycroft, A. N., & Henderson, B. (2006). Phage display in the study of infectious diseases. Trends in Microbiology, 14(3), 141–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, J. X., Bishop-Hurley, S. L., & Cooper, M. A. (2012). Development of anti-infectives using phage display: Biological agents against bacteria, viruses, and parasites. Antimicrobial Agents and Chemotherapy, 56(9), 4569–4582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seidel-Greven, M., Addai-Mensah, O., Spiegel, H., Chiegoua Dipah, G. N., Schmitz, S., Breuer, G., Frempong, M., Reimann, A., Klockenbring, T., Fischer, R., Barth, S., & Fendel, R. (2021). Isolation and light chain shuffling of a Plasmodium falciparum AMA1-specific human monoclonal antibody with growth inhibitory activity. Malaria Journal, 20(1), 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mechaly, A., Elia, U., Alcalay, R., Cohen, H., Epstein, E., Cohen, O., & Mazor, O. (2019). Inhibition of Francisella tularensis phagocytosis using a novel anti-LPS scFv antibody fragment. Science and Reports, 9(1), 11418.

    Article  Google Scholar 

  54. Ahn, B. E., Bae, H. W., Lee, H. R., Woo, S. J., Park, O. K., Jeon, J. H., Park, J., & Rhie, G. E. (2019). A therapeutic human antibody against the domain 4 of the Bacillus anthracis protective antigen shows protective efficacy in a mouse model. Biochemical and Biophysical Research Communications, 509(2), 611–616.

    Article  CAS  PubMed  Google Scholar 

  55. Chevigne, A., Delhalle, S., Counson, M., Beaupain, N., Rybicki, A., Verschueren, C., Staub, T., Schmit, J. C., Seguin-Devaux, C., & Deroo, S. (2016). Isolation of an HIV-1 neutralizing peptide mimicking the CXCR4 and CCR5 surface from the heavy-chain complementary determining region 3 repertoire of a viremic controller. AIDS, 30(3), 377–382.

    Article  CAS  PubMed  Google Scholar 

  56. Sulong, P., Anudit, N., Nuanualsuwan, S., Mariela, S., & Khantasup, K. (2021). Application of phage display technology for the production of antibodies against Streptococcus suis serotype 2. PLoS ONE, 16(10), e0258931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang, C. Y., Chang, F. L., Chiang, C. W., Lo, Y. N., Lin, T. Y., Chen, W. C., Tsai, K. C., & Lee, Y. C. (2018). Interaction of S17 antibody with the functional binding region of the Hepatitis B virus pre-S2 Epitope. Viral Immunology, 31(7), 492–499.

    Article  CAS  PubMed  Google Scholar 

  58. Deng, Q., Guo, Z., Hu, H., Li, Q., Zhang, Y., Wang, J., Liao, C., Guo, C., Li, X., Chen, Z., & Lu, J. (2022). Inhibition of Chikungunya virus early replication by intracellular nanoantibodies targeting nsP2 Epitope Rich Region. Antiviral Research, 208, 105446.

    Article  CAS  PubMed  Google Scholar 

  59. Wei, J., Hameed, M., Wang, X., Zhang, J., Guo, S., Anwar, M. N., Pang, L., Liu, K., Li, B., Shao, D., Qiu, Y., Zhong, D., Zhou, B., & Ma, Z. (2020). Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Research, 174, 104673.

    Article  CAS  PubMed  Google Scholar 

  60. Yuan, T. Z., Garg, P., Wang, L., Willis, J. R., Kwan, E., Hernandez, A. G. L., Tuscano, E., Sever, E. N., Keane, E., Soto, C., Mucker, E. M., Fouch, M. E., Davidson, E., Doranz, B. J., Kailasan, S., Aman, M. J., Li, H., Hooper, J. W., Saphire, E. O., … Sato, A. K. (2022). Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 14(1), 2002236.

    Article  PubMed  Google Scholar 

  61. Parray, H. A., Chiranjivi, A. K., Asthana, S., Yadav, N., Shrivastava, T., Mani, S., Sharma, C., Vishwakarma, P., Das, S., Pindari, K., Sinha, S., Samal, S., Ahmed, S., & Kumar, R. (2020). Identification of an anti-SARS-CoV-2 receptor-binding domain-directed human monoclonal antibody from a naïve semisynthetic library. Journal of Biological Chemistry, 295(36), 12814–12821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koirala, D., Lewicka, A., Koldobskaya, Y., Huang, H., & Piccirilli, J. A. (2020). Synthetic antibody binding to a preorganized RNA domain of hepatitis C virus internal ribosome entry site inhibits translation. ACS Chemical Biology, 15(1), 205–216.

    Article  CAS  PubMed  Google Scholar 

  63. Phanthong, S., Densumite, J., Seesuay, W., Thanongsaksrikul, J., Teimoori, S., Sookrung, N., Poovorawan, Y., Onvimala, N., Guntapong, R., Pattanapanyasat, K., & Chaicumpa, W. (2020). Human antibodies to VP4 inhibit replication of enteroviruses across subgenotypes and serotypes, and enhance host innate immunity. Frontiers in Microbiology, 11, 562768.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anand, T., Virmani, N., Bera, B. C., Vaid, R. K., Vashisth, M., Bardajatya, P., Kumar, A., & Tripathi, B. N. (2021). Phage display technique as a tool for diagnosis and antibody selection for coronaviruses. Current Microbiology, 78(4), 1124–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pan, Y., Du, J., Liu, J., Wu, H., Gui, F., Zhang, N., Deng, X., Song, G., Li, Y., Lu, J., Wu, X., Zhan, S., Jing, Z., Wang, J., Yang, Y., Liu, J., Chen, Y., Chen, Q., Zhang, H., … Yang, X. (2021). Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discovery, 7(1), 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ma, H., Zeng, W., Meng, X., Huang, X., Yang, Y., Zhao, D., Zhou, P., Wang, X., Zhao, C., Sun, Y., Wang, P., Ou, H., Hu, X., Xiang, Y., & Jin, T. (2021). Potent neutralization of SARS-CoV-2 by hetero-bivalent Alpaca nanobodies targeting the spike receptor-binding domain. Journal of Virology. https://doi.org/10.1128/JVI.02438-20

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ku, Z., Xie, X., Davidson, E., Ye, X., Su, H., Menachery, V. D., Li, Y., Yuan, Z., Zhang, X., Muruato, A. E., Ariadna Grinyo, I. E., Tyrell, B., Doolan, K., Doranz, B. J., Wrapp, D., Bates, P. F., McLellan, J. S., Weiss, S. R., Zhang, N., … An, Z. (2021). Author Correction: Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 12(1), 4177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Labriola, J. M., Miersch, S., Chen, G., Chen, C., Pavlenco, A., Saberianfar, R., Caccuri, F., Zani, A., Sharma, N., Feng, A., Leung, D. W., Caruso, A., Novelli, G., Amarasinghe, G. K., & Sidhu, S. S. (2022). Peptide-antibody fusions engineered by phage display exhibit an ultrapotent and broad neutralization of SARS-CoV-2 Variants. ACS Chemical Biology, 17(7), 1978–1988.

    Article  CAS  PubMed  Google Scholar 

  69. Sokullu, E., Gauthier, M. S., & Coulombe, B. (2021). Discovery of antivirals using phage display. Viruses. https://doi.org/10.3390/v13061120

    Article  PubMed  PubMed Central  Google Scholar 

  70. Seesuay, W., Phanthong, S., Densumite, J., Mahasongkram, K., Sookrung, N., & Chaicumpa, W. (2021). Human transbodies to reverse transcriptase connection subdomain of HIV-1 Gag-Pol polyprotein reduce infectiousness of the virus progeny. Vaccines (Basel). https://doi.org/10.3390/vaccines9080893

    Article  PubMed  Google Scholar 

  71. Desimmie, B. A., Humbert, M., Lescrinier, E., Hendrix, J., Vets, S., Gijsbers, R., Ruprecht, R. M., Dietrich, U., Debyser, Z., & Christ, F. (2012). Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Molecular Therapy, 20(11), 2064–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Desimmie, B. A., Humbert, M., Lescrinier, E., Hendrix, J., Vets, S., Gijsbers, R., Ruprecht, R. M., Dietrich, U., Debyser, Z., & Christ, F. (2021). Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Molecular Therapy, 29(2), 887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berry, S. K., Rust, S., Caceres, C., Irving, L., Bartholdson Scott, J., Tabor, D. E., Dougan, G., Christie, G., Warrener, P., Minter, R., & Grant, A. J. (2022). Phenotypic whole-cell screening identifies a protective carbohydrate epitope on Klebsiella pneumoniae. MAbs, 14(1), 2006123.

    Article  PubMed  Google Scholar 

  74. Ch’ng, A. C. W., Schepergerdes, L., Choong, Y. S., Hust, M., & Lim, T. S. (2022). Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Molecular Immunology, 150, 47–57.

    Article  CAS  PubMed  Google Scholar 

  75. Maso, L., Vascon, F., Chinellato, M., Goormaghtigh, F., Bellio, P., Campagnaro, E., Van Melderen, L., Ruzzene, M., Pardon, E., Angelini, A., Celenza, G., Steyaert, J., Tondi, D., & Cendron, L. (2022). Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure, 30(11), 1479-1493.e1479.

    Article  CAS  PubMed  Google Scholar 

  76. Podlesek, Z., & Žgur Bertok, D. (2020). The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Frontiers in Microbiology, 11, 1785.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Messing, J. (2016). Phage M13 for the treatment of Alzheimer and Parkinson disease. Gene, 583(2), 85–89.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, X., Zhang, X., Gao, H., & Qing, G. (2022). Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics, 12(5), 2041–2062.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huang, Y. Y., Fang, N., Luo, H. R., Gao, F., Zou, Y., Zhou, L. L., Zeng, Q. P., Fang, S. S., Xiao, F., & Zheng, Q. (2020). RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology, 180, 108304.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, X., Zhang, X., Li, Y., Zhong, M., Zhao, P., Guo, C., Xu, H., Wang, T., & Gao, H. (2021). Brain targeting and Aβ binding bifunctional nanoparticles inhibit amyloid protein aggregation in APP/PS1 transgenic mice. ACS Chemical Neuroscience, 12(12), 2110–2121.

    Article  CAS  PubMed  Google Scholar 

  81. Malhis, M., Kaniyappan, S., Aillaud, I., Chandupatla, R. R., Ramirez, L. M., Zweckstetter, M., Horn, A. H. C., Mandelkow, E., Sticht, H., & Funke, S. A. (2021). Potent Tau aggregation inhibitor D-peptides selected against Tau-repeat 2 using mirror image phage display. ChemBioChem, 22(21), 3049–3059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, Y., Wang, T., Meng, L., Jin, L., Liu, C., Liang, Y., Ren, L., Liu, Y., Liu, Y., Liu, S., Li, T., Liang, Y., Chen, X., & Zhang, Z. (2022). Novel naturally occurring autoantibodies attenuate α-synuclein pathology in a mouse model of Parkinson’s disease. Neuropathology and Applied Neurobiology. https://doi.org/10.1111/nan.12860

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hmila, I., Vaikath, N. N., Majbour, N. K., Erskine, D., Sudhakaran, I. P., Gupta, V., Ghanem, S. S., Islam, Z., Emara, M. M., Abdesselem, H. B., Kolatkar, P. R., Achappa, D. K., Vinardell, T., & El-Agnaf, O. M. A. (2022). Novel engineered nanobodies specific for N-terminal region of alpha-synuclein recognize Lewy-body pathology and inhibit in-vitro seeded aggregation and toxicity. FEBS Journal, 289(15), 4657–4673.

    Article  CAS  PubMed  Google Scholar 

  84. Santur, K., Reinartz, E., Lien, Y., Tusche, M., Altendorf, T., Sevenich, M., Tamgüney, G., Mohrlüder, J., & Willbold, D. (2021). Ligand-induced stabilization of the native human superoxide dismutase 1. ACS Chemical Neuroscience, 12(13), 2520–2528.

    Article  CAS  PubMed  Google Scholar 

  85. Ghadge, G. D., Kay, B. K., Drigotas, C., & Roos, R. P. (2019). Single chain variable fragment antibodies directed against SOD1 ameliorate disease in mutant SOD1 transgenic mice. Neurobiology of Diseases, 121, 131–137.

    Article  CAS  Google Scholar 

  86. Nafian, F., Rasaee, M. J., Yazdani, S., Daftarian, N., Soheili, Z. S., & Kamali Doust Azad, B. (2018). Peptide selected by phage display increases survival of SH-SY5Y neurons comparable to brain-derived neurotrophic factor. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.28036

    Article  PubMed  Google Scholar 

  87. Majerova, P., Hanes, J., Olesova, D., Sinsky, J., Pilipcinec, E., & Kovac, A. (2020). Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules. https://doi.org/10.3390/molecules25040874

    Article  PubMed  PubMed Central  Google Scholar 

  88. Aguiar, S. I., Dias, J. N. R., André, A. S., Silva, M. L., Martins, D., Carrapiço, B., Castanho, M., Carriço, J., Cavaco, M., Gaspar, M. M., Nobre, R. J., Pereira de Almeida, L., Oliveira, S., Gano, L., Correia, J. D. G., Barbas, C., 3rd., Gonçalves, J., Neves, V., & Aires-da-Silva, F. (2021). Highly specific blood-brain barrier transmigrating single-domain antibodies selected by an in vivo phage display screening. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13101598

    Article  PubMed  PubMed Central  Google Scholar 

  89. Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S., Moghoofei, M., & Hamblin, M. R. (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Advanced Drug Delivery Reviews, 106(Pt A), 45–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yacoby, I., Bar, H., & Benhar, I. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrobial Agents and Chemotherapy, 51(6), 2156–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yacoby, I., Shamis, M., Bar, H., Shabat, D., & Benhar, I. (2006). Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrobial Agents and Chemotherapy, 50(6), 2087–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kalimuthu, K., Lubin, B. C., Bazylevich, A., Gellerman, G., Shpilberg, O., Luboshits, G., & Firer, M. A. (2018). Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. Journal Nanobiotechnology, 16(1), 34.

    Article  Google Scholar 

  93. Wang, X., Wang, F., Li, S., Yin, G., & Pu, X. (2022). Preparation and in vitro evaluation of thermosensitive liposomes targeting ovarian cancer. Current Drug Delivery, 19(9), 940–948.

    Article  CAS  PubMed  Google Scholar 

  94. Hung, J., Awasthi, R., Klibanov, A. L., & Kelly, K. A. (2021). Identification of novel ligands for targeted antifibrotic therapy of chronic pancreatitis. International Journal of Nanomedicine, 16, 5495–5512.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wu, C. H., Lan, C. H., Wu, K. L., Wu, Y. M., Jane, W. N., Hsiao, M., & Wu, H. C. (2018). Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. International Journal of Oncology, 52(2), 389–401.

    CAS  PubMed  Google Scholar 

  96. Wang, Y. P., Liu, I. J., Chung, M. J., & Wu, H. C. (2020). Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncology, 106, 104689.

    Article  CAS  PubMed  Google Scholar 

  97. Panikar, S. S., Ramírez-García, G., Vallejo-Cardona, A. A., Banu, N., Patrón-Soberano, O. A., Cialla-May, D., Camacho-Villegas, T. A., & de la Rosa, E. (2019). Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF(4):Yb, Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale, 11(43), 20598–20613.

    Article  CAS  PubMed  Google Scholar 

  98. Gross, A. L., Gillespie, J. W., & Petrenko, V. A. (2016). Promiscuous tumor targeting phage proteins. Protein Engineering, Design & Selection, 29(3), 93–103.

    Article  CAS  Google Scholar 

  99. Yeh, C. Y., Hsiao, J. K., Wang, Y. P., Lan, C. H., & Wu, H. C. (2016). Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials, 99, 1–15.

    Article  CAS  PubMed  Google Scholar 

  100. Bedi, D., Gillespie, J. W., & Petrenko, V. A. (2014). Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines. Protein Engineering, Design & Selection, 27(7), 235–243.

    Article  CAS  Google Scholar 

  101. Saeed, M., van Brakel, M., Zalba, S., Schooten, E., Rens, J. A., Koning, G. A., Debets, R., & Ten Hagen, T. L. (2016). Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody. International Journal of Nanomedicine, 11, 955–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dasa, S. S. K., Suzuki, R., Gutknecht, M., Brinton, L. T., Tian, Y., Michaelsson, E., Lindfors, L., Klibanov, A. L., French, B. A., & Kelly, K. A. (2015). Development of target-specific liposomes for delivering small molecule drugs after reperfused myocardial infarction. Journal of Controlled Release, 220(Pt A), 556–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hofmeister, L. H., Lee, S. H., Norlander, A. E., Montaniel, K. R., Chen, W., Harrison, D. G., & Sung, H. J. (2015). Phage-display-guided nanocarrier targeting to atheroprone vasculature. ACS Nano, 9(4), 4435–4446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, S., Li, Z. X., Liao, G. J., Chen, Z. B., & Li, C. (2016). Novel liposomal drug delivery system actively targeting Cryptococcus neoformans and elimination of infection. Yao Xue Xue Bao, 51(7), 1150–1157.

    PubMed  Google Scholar 

  105. Choudhury, A., Islam, S. M. A., Ghidey, M. R., & Kearney, C. M. (2020). Repurposing a drug targeting peptide for targeting antimicrobial peptides against Staphylococcus. Biotechnology Letters, 42(2), 287–294.

    Article  CAS  PubMed  Google Scholar 

  106. Zeng, Y. L., Zhang, X. J., Shang, J., Ding, G. Q., & Kang, Y. (2014). Single-chain human anti-EGFR antibody/truncated protamine fusion protein carrying Hsp47 siRNA can induce apoptosis of human hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi, 22(11), 843–848.

    CAS  PubMed  Google Scholar 

  107. Terashima, T., Ogawa, N., Sato, T., Katagi, M., Nakae, Y., Okano, J., Maegawa, H., & Kojima, H. (2019). Advanced technology for gene delivery with homing peptides to spinal cord through systemic circulation in mice. Molecular Therapy—Methods & Clinical Development, 13, 474–483.

    Article  CAS  Google Scholar 

  108. Terashima, T., Ogawa, N., Nakae, Y., Sato, T., Katagi, M., Okano, J., Maegawa, H., & Kojima, H. (2018). Gene therapy for neuropathic pain through siRNA-IRF5 gene delivery with homing peptides to microglia. Molecular Therapy—Nucleic Acids, 11, 203–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kiss, K., Biri-Kovács, B., Szabó, R., Ranđelović, I., Enyedi, K. N., Schlosser, G., Orosz, Á., Kapuvári, B., Tóvári, J., & Mező, G. (2019). Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. European Journal of Medicinal Chemistry, 176, 105–116.

    Article  CAS  PubMed  Google Scholar 

  110. Dókus, L. E., Lajkó, E., Ranđelović, I., Mező, D., Schlosser, G., Kőhidai, L., Tóvári, J., & Mező, G. (2020). Phage display-based homing peptide-daunomycin conjugates for selective drug targeting to PANC-1 pancreatic cancer. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12060576

    Article  PubMed  PubMed Central  Google Scholar 

  111. Furman, O., Zaporozhets, A., Tobi, D., Bazylevich, A., Firer, M. A., Patsenker, L., Gellerman, G., & Lubin, B. C. R. (2022). Novel cyclic peptides for targeting EGFR and EGRvIII mutation for drug delivery. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14071505

    Article  PubMed  PubMed Central  Google Scholar 

  112. Khan, F., Gurung, S., Gunassekaran, G. R., Vadevoo, S. M. P., Chi, L., Permpoon, U., Haque, M. E., Lee, Y. K., Lee, S. W., Kim, S., & Lee, B. (2021). Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Theranostics, 11(3), 1326–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ayo, A., Figueras, E., Schachtsiek, T., Budak, M., Sewald, N., & Laakkonen, P. (2020). Tumor-targeting peptides: the functional screen of glioblastoma homing peptides to the target protein FABP3 (MDGI). Cancers (Basel). https://doi.org/10.3390/cancers12071836

    Article  PubMed  Google Scholar 

  114. Karami Fath, M., Babakhaniyan, K., Zokaei, M., Yaghoubian, A., Akbari, S., Khorsandi, M., Soofi, A., Nabi-Afjadi, M., Zalpoor, H., Jalalifar, F., Azargoonjahromi, A., Payandeh, Z., & Alagheband Bahrami, A. (2022). Anti-cancer peptide-based therapeutic strategies in solid tumors. Cellular & Molecular Biology Letters, 27(1), 33.

    Article  CAS  Google Scholar 

  115. Zahid, M., & Robbins, P. D. (2015). Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules, 20(7), 13055–13070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, N., Wu, J., Qin, Y. Y., Zhao, X. L., Ding, Y., Sun, L. S., He, T., Huang, X. W., Liu, C. B., & Wang, H. (2017). Novel peptide MT23 for potent penetrating and selective targeting in mouse melanoma cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 120, 80–88.

    Article  CAS  PubMed  Google Scholar 

  117. Bernatchez, P. N., Tao, B., Bradshaw, R. A., Eveleth, D., & Sessa, W. C. (2021). Characterization of a novel caveolin modulator that reduces vascular permeability and ocular inflammation. Translational Vision Science & Technology, 10(6), 21.

    Article  Google Scholar 

  118. Michelfelder, S., & Trepel, M. (2009). Adeno-associated viral vectors and their redirection to cell-type specific receptors. Advances in Genetics, 67, 29–60.

    Article  CAS  PubMed  Google Scholar 

  119. Buchholz, C. J., Friedel, T., & Büning, H. (2015). Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends in Biotechnology, 33(12), 777–790.

    Article  CAS  PubMed  Google Scholar 

  120. Campbell, S., Suwan, K., Waramit, S., Aboagye, E. O., & Hajitou, A. (2018). Selective inhibition of histone deacetylation in melanoma increases targeted gene delivery by a bacteriophage viral vector. Cancers (Basel). https://doi.org/10.3390/cancers10040125

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chongchai, A., Waramit, S., Wongwichai, T., Kampangtip, J., Phitak, T., Kongtawelert, P., Hajitou, A., Suwan, K., & Pothacharoen, P. (2021). Targeting human osteoarthritic chondrocytes with ligand directed bacteriophage-based particles. Viruses. https://doi.org/10.3390/v13122343

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mandrup, O. A., Lykkemark, S., & Kristensen, P. (2017). Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy. Science and Reports, 7, 42230.

    Article  CAS  Google Scholar 

  123. Bakhshinejad, B., Karimi, M., & Sadeghizadeh, M. (2014). Bacteriophages and medical oncology: Targeted gene therapy of cancer. Medical Oncology, 31(8), 110.

    Article  PubMed  Google Scholar 

  124. Santa-Cruz Mateos, C., Valencia-Expósito, A., Palacios, I. M., & Martín-Bermudo, M. D. (2020). Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks. PLoS Genetics, 16(6), e1008717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yazlovitskaya, E. M., Plosa, E., Bock, F., Viquez, O. M., Mernaugh, G., Gewin, L. S., De Arcangelis, A., Georges-Labouesse, E., Sonnenberg, A., Blackwell, T. S., Pozzi, A., & Zent, R. (2021). The laminin-binding integrins regulate nuclear factor κB-dependent epithelial cell polarity and inflammation. Journal of Cell Science. https://doi.org/10.1242/jcs.259161

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chen, J., Green, J., Yurdagul, A., Jr., Albert, P., McInnis, M. C., & Orr, A. W. (2015). αvβ3 integrins mediate flow-induced NF-κB activation, proinflammatory gene expression, and early atherogenic inflammation. American Journal of Pathology, 185(9), 2575–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takada, Y., Ye, X., & Simon, S. (2007). The integrins. Genome Biology, 8(5), 215.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Won, J. H., Choi, J. S., & Jun, J. I. (2022). CCN1 interacts with integrins to regulate intestinal stem cell proliferation and differentiation. Nature Communications, 13(1), 3117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bai, M., Grieshaber-Bouyer, R., Wang, J., Schmider, A. B., Wilson, Z. S., Zeng, L., Halyabar, O., Godin, M. D., Nguyen, H. N., Levescot, A., Cunin, P., Lefort, C. T., Soberman, R. J., & Nigrovic, P. A. (2017). CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood, 130(19), 2092–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. LaFoya, B., Munroe, J. A., Miyamoto, A., Detweiler, M. A., Crow, J. J., Gazdik, T., & Albig, A. R. (2018). Beyond the matrix: The many non-ECM ligands for integrins. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020449

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sigrist, C. J., Bridge, A., & Le Mercier, P. (2020). A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Research, 177, 104759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Triantafilou, K., Takada, Y., & Triantafilou, M. (2001). Mechanisms of integrin-mediated virus attachment and internalization process. Critical Reviews in Immunology, 21(4), 311–322.

    CAS  PubMed  Google Scholar 

  133. Przystal, J. M., Waramit, S., Pranjol, M. Z. I., Yan, W., Chu, G., Chongchai, A., Samarth, G., Olaciregui, N. G., Tabatabai, G., Carcaboso, A. M., Aboagye, E. O., Suwan, K., & Hajitou, A. (2019). Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma. EMBO Molecular Medicine. https://doi.org/10.15252/emmm.201708492

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chongchai, A., Waramit, S., Suwan, K., Al-Bahrani, M., Udomruk, S., Phitak, T., Kongtawelert, P., Pothacharoen, P., & Hajitou, A. (2021). Bacteriophage-mediated therapy of chondrosarcoma by selective delivery of the tumor necrosis factor alpha (TNFα) gene. The FASEB Journal, 35(5), e21487.

    Article  CAS  PubMed  Google Scholar 

  135. Tsafa, E., Bentayebi, K., Topanurak, S., Yata, T., Przystal, J., Fongmoon, D., Hajji, N., Waramit, S., Suwan, K., & Hajitou, A. (2020). Doxorubicin improves cancer cell targeting by filamentous phage gene delivery vectors. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21217867

    Article  PubMed  PubMed Central  Google Scholar 

  136. Namdee, K., Khongkow, M., Boonrungsiman, S., Nittayasut, N., Asavarut, P., Temisak, S., Saengkrit, N., Puttipipatkhachorn, S., Hajitou, A., Ruxrungtham, K., & Yata, T. (2018). Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal tract. Molecular Therapy—Nucleic Acids, 12, 33–44.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Nguyen, T. V., Anguiano-Zarate, S. S., Matchett, W. E., Barry, M. E., & Barry, M. A. (2018). Retargeted and detargeted adenovirus for gene delivery to the muscle. Virology, 514, 118–123.

    Article  CAS  PubMed  Google Scholar 

  138. Souza, G. R., Christianson, D. R., Staquicini, F. I., Ozawa, M. G., Snyder, E. Y., Sidman, R. L., Miller, J. H., Arap, W., & Pasqualini, R. (2006). Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proceedings of the National Academy of Sciences U S A, 103(5), 1215–1220.

    Article  CAS  Google Scholar 

  139. Souza, G. R., Yonel-Gumruk, E., Fan, D., Easley, J., Rangel, R., Guzman-Rojas, L., Miller, J. H., Arap, W., & Pasqualini, R. (2008). Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: The effect of cis- and trans-acting factors. PLoS ONE, 3(5), e2242.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Smith, T. L., Souza, G. R., Sidman, R. L., Arap, W., & Pasqualini, R. (2017). An AAVP-based solid-phase transducing matrix for transgene delivery: Potential for translational applications. Cancer Gene Therapy, 24(8), 358–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cao, B., Xu, H., Yang, M., & Mao, C. (2018). Virus-based cancer therapeutics for targeted photodynamic therapy. Methods in Molecular Biology, 1776, 643–652.

    Article  CAS  PubMed  Google Scholar 

  142. Ulfo, L., Costantini, P. E., Di Giosia, M., Danielli, A., & Calvaresi, M. (2022). EGFR-targeted photodynamic therapy. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14020241

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bortot, B., Apollonio, M., Baj, G., Andolfi, L., Zupin, L., Crovella, S., di Giosia, M., Cantelli, A., Saporetti, R., Ulfo, L., Petrosino, A., Di Lorenzo, G., Romano, F., Ricci, G., Mongiat, M., Danielli, A., Calvaresi, M., & Biffi, S. (2022). Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: Mitochondrial localization and autophagy induction in ovarian cancer cell lines. Free Radical Biology & Medicine, 179, 242–251.

    Article  CAS  Google Scholar 

  144. Ulfo, L., Cantelli, A., Petrosino, A., Costantini, P. E., Nigro, M., Starinieri, F., Turrini, E., Zadran, S. K., Zuccheri, G., Saporetti, R., Di Giosia, M., Danielli, A., & Calvaresi, M. (2022). Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. Nanoscale, 14(3), 632–641.

    Article  CAS  PubMed  Google Scholar 

  145. Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11(4), 69.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Feins, S., Kong, W., Williams, E. F., Milone, M. C., & Fraietta, J. A. (2019). An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. American Journal of Hematology, 94(S1), S3–S9.

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, Z. Z., Wang, T., Wang, X. F., Zhang, Y. Q., Song, S. X., & Ma, C. Q. (2022). Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacological Research, 175, 106036.

    Article  CAS  PubMed  Google Scholar 

  148. Morrissey, M. A., Williamson, A. P., Steinbach, A. M., Roberts, E. W., Kern, N., Headley, M. B., & Vale, R. D. (2018). Chimeric antigen receptors that trigger phagocytosis. eLife. https://doi.org/10.7554/eLife.36688

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jayaraman, J., Mellody, M. P., Hou, A. J., Desai, R. P., Fung, A. W., Pham, A. H. T., Chen, Y. Y., & Zhao, W. (2020). CAR-T design: Elements and their synergistic function. eBioMedicine, 58, 102931.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Abrantes, R., Duarte, H. O., Gomes, C., Wälchli, S., & Reis, C. A. (2022). CAR-Ts: New perspectives in cancer therapy. FEBS Letters, 596(4), 403–416.

    Article  CAS  PubMed  Google Scholar 

  151. Pameijer, C. R., Navanjo, A., Meechoovet, B., Wagner, J. R., Aguilar, B., Wright, C. L., Chang, W. C., Brown, C. E., & Jensen, M. C. (2007). Conversion of a tumor-binding peptide identified by phage display to a functional chimeric T cell antigen receptor. Cancer Gene Therapy, 14(1), 91–97.

    Article  CAS  PubMed  Google Scholar 

  152. Dai, Z., Mu, W., Zhao, Y., Jia, X., Liu, J., Wei, Q., Tan, T., & Zhou, J. (2021). The rational development of CD5-targeting biepitopic CARs with fully human heavy-chain-only antigen recognition domains. Molecular Therapy, 29(9), 2707–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, W. S., Ye, Z., Cheung, A. M. S., Goh, Y. P. S., Oh, H. L. J., Rajarethinam, R., Yeo, S. P., Soh, M. K., Chan, E. H. L., Tan, L. K., Tan, S. Y., Chuah, C., Chng, W. J., Connolly, J. E., & Wang, C. I. (2021). Effective killing of acute myeloid leukemia by TIM-3 targeted chimeric antigen receptor T cells. Molecular Cancer Therapeutics, 20(9), 1702–1712.

    Article  CAS  PubMed  Google Scholar 

  154. Mo, F., Duan, S., Jiang, X., Yang, X., Hou, X., Shi, W., Carlos, C. J. J., Liu, A., Yin, S., Wang, W., Yao, H., Yu, Z., Tang, Z., Xie, S., Ding, Z., Zhao, X., Hammock, B. D., & Lu, X. (2021). Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduction and Targeted Therapy, 6(1), 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lin, C. W., Wang, Y. J., Lai, T. Y., Hsu, T. L., Han, S. Y., Wu, H. C., Shen, C. N., Dang, V., Chen, M. W., Chen, L. B., & Wong, C. H. (2021). Homogeneous antibody and CAR-T cells with improved effector functions targeting SSEA-4 glycan on pancreatic cancer. Proceedings of the National Academy of Sciences U S A. https://doi.org/10.1073/pnas.2114774118

    Article  Google Scholar 

  156. Bloemberg, D., Nguyen, T., MacLean, S., Zafer, A., Gadoury, C., Gurnani, K., Chattopadhyay, A., Ash, J., Lippens, J., Harcus, D., Pagé, M., Fortin, A., Pon, R. A., Gilbert, R., Marcil, A., Weeratna, R. D., & McComb, S. (2020). A high-throughput method for characterizing novel chimeric antigen receptors in Jurkat cells. Molecular Therapy—Methods & Clinical Development, 16, 238–254.

    Article  CAS  Google Scholar 

  157. Kagoya, Y., Tanaka, S., Guo, T., Anczurowski, M., Wang, C. H., Saso, K., Butler, M. O., Minden, M. D., & Hirano, N. (2018). A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature Medicine, 24(3), 352–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bagheri, S., Safaie Qamsari, E., Yousefi, M., Riazi-Rad, F., & Sharifzadeh, Z. (2020). Targeting the 4–1BB costimulatory molecule through single chain antibodies promotes the human T-cell response. Cellular & Molecular Biology Letters, 25, 28.

    Article  CAS  Google Scholar 

  159. Jan, C. I., Huang, S. W., Canoll, P., Bruce, J. N., Lin, Y. C., Pan, C. M., Lu, H. M., Chiu, S. C., & Cho, D. Y. (2021). Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. Journal for ImmunoTherapy of Cancer. https://doi.org/10.1136/jitc-2021-003050

    Article  PubMed  PubMed Central  Google Scholar 

  160. Smith, E. L., Harrington, K., Staehr, M., Masakayan, R., Jones, J., Long, T. J., Ng, K. Y., Ghoddusi, M., Purdon, T. J., Wang, X., Do, T., Pham, M. T., Brown, J. M., De Larrea, C. F., Olson, E., Peguero, E., Wang, P., Liu, H., Xu, Y., … Brentjens, R. J. (2019). GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aau7746

    Article  PubMed  PubMed Central  Google Scholar 

  161. Leyton-Castro, N. F., Brigido, M. M., & Maranhão, A. Q. (2020). Selection of antibody fragments for CAR-T cell therapy from phage display libraries. Methods in Molecular Biology, 2086, 13–26.

    Article  CAS  PubMed  Google Scholar 

  162. Wu, Y., Jiang, S., & Ying, T. (2016). From therapeutic antibodies to chimeric antigen receptors (CARs): Making better CARs based on antigen-binding domain. Expert Opinion on Biological Therapy, 16(12), 1469–1478.

    Article  CAS  PubMed  Google Scholar 

  163. Ochi, T., Maruta, M., Tanimoto, K., Kondo, F., Yamamoto, T., Kurata, M., Fujiwara, H., Masumoto, J., Takenaka, K., & Yasukawa, M. (2021). A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Communication Biology, 4(1), 273.

    Article  CAS  Google Scholar 

  164. Yang, M., Zhang, W., Yu, K., Wang, P., Jiang, H., Chen, L., Meng, H., Weng, Y., Tao, R., Huang, X., Xing, C., Wang, H., Wan, J., Wang, S., Dai, L., Hendrix, A. Y., Xiao, J., Wang, W., Ma, H., … Jiang, S. (2022). A novel BCMA CAR-T-cell therapy with optimized human scFv for treatment of relapsed/refractory multiple myeloma: Results from phase I clinical trials. Haematologica, 107(8), 1960–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liu, X., Xu, Y., Xiong, W., Yin, B., Huang, Y., Chu, J., Xing, C., Qian, C., Du, Y., Duan, T., Wang, H. Y., Zhang, N., Yu, J. S., An, Z., & Wang, R. (2022). Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy. Journal for ImmunoTherapy of Cancer. https://doi.org/10.1136/jitc-2021-004035

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, H., Zhong, D., Luo, H., Shi, W., Xie, S., Qiang, H., Zhu, L., Gao, L., Liu, J., Sun, S., Ding, Z., Yang, X., & Lu, X. (2022). Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomedicine & Pharmacotherapy, 156, 113919.

    Article  CAS  Google Scholar 

  167. Zhao, S., Chadwick, L., Mysler, E., & Moots, R. J. (2018). Review of biosimilar trials and data on adalimumab in rheumatoid arthritis. Current Rheumatology Reports, 20(10), 57.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sparrow, M. P. (2017). Adalimumab in ulcerative colitis—Efficacy, safety and optimization in the era of treat-to target. Expert Opinion on Biological Therapy, 17(5), 613–621.

    Article  CAS  PubMed  Google Scholar 

  169. Bechara, F. G., Podda, M., Prens, E. P., Horváth, B., Giamarellos-Bourboulis, E. J., Alavi, A., Szepietowski, J. C., Kirby, J., Geng, Z., Jean, C., Jemec, G. B. E., & Zouboulis, C. C. (2021). Efficacy and safety of adalimumab in conjunction with surgery in moderate to severe hidradenitis suppurativa: The SHARPS randomized clinical trial. JAMA Surgery, 156(11), 1001–1009.

    Article  PubMed  Google Scholar 

  170. Suhler, E. B., Jaffe, G. J., Fortin, E., Lim, L. L., Merrill, P. T., Dick, A. D., Brezin, A. P., Nguyen, Q. D., Thorne, J. E., Van Calster, J., Cimino, L., Adan, A., Goto, H., Kaburaki, T., Kramer, M., Vitale, A. T., Kron, M., Song, A. P., Liu, J., … Rosenbaum, J. T. (2021). Long-term safety and efficacy of adalimumab in patients with noninfectious intermediate uveitis, posterior uveitis, or panuveitis. Ophthalmology, 128(6), 899–909.

    Article  PubMed  Google Scholar 

  171. Burmester, G. R., Panaccione, R., Gordon, K. B., McIlraith, M. J., & Lacerda, A. P. (2013). Adalimumab: Long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Annals of the Rheumatic Diseases, 72(4), 517–524.

    Article  CAS  PubMed  Google Scholar 

  172. Elewski, B. E., Baker, C. S., Crowley, J. J., Poulin, Y., Okun, M. M., Calimlim, B., Geng, Z., Reyes Servin, O., & Rich, P. A. (2019). Adalimumab for nail psoriasis: Efficacy and safety over 52 weeks from a phase-3, randomized, placebo-controlled trial. Journal of the European Academy of Dermatology and Venereology, 33(11), 2168–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Salfeld, J. (1998). Generation of fully human anti-TNF antibody D2E7. Arthritis and Rheumatism, 41(9), S57.

    Google Scholar 

  174. Machold, K. P., & Smolen, J. S. (2003). Adalimumab–a new TNF-α antibody for treatment of inflammatory joint disease. Expert opinion on biological therapy, 3(2), 351–360.

    CAS  PubMed  Google Scholar 

  175. Ryu, R., & Ward, K. E. (2018). Atezolizumab for the first-line treatment of non-small cell lung cancer (NSCLC): Current status and future prospects. Frontiers in Oncology, 8, 277.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Crist, M., & Balar, A. (2017). Atezolizumab in invasive and metastatic urothelial carcinoma. Expert Review of Clinical Pharmacology, 10(12), 1295–1301.

    Article  CAS  PubMed  Google Scholar 

  177. Hamilou, Z., Lavaud, P., & Loriot, Y. (2018). Atezolizumab in urothelial bladder carcinoma. Future Oncology, 14(4), 331–341.

    Article  CAS  PubMed  Google Scholar 

  178. Reddy, S. M., Carroll, E., & Nanda, R. (2020). Atezolizumab for the treatment of breast cancer. Expert Review of Anticancer Therapy, 20(3), 151–158.

    Article  CAS  PubMed  Google Scholar 

  179. Santini, F. C., & Rudin, C. M. (2017). Atezolizumab for the treatment of non-small cell lung cancer. Expert Review of Clinical Pharmacology, 10(9), 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Grenga, I., Donahue, R. N., Lepone, L. M., Richards, J., & Schlom, J. (2016). A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses. Clin Transl Immunology, 5(5), e83.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Stohl, W., & Hilbert, D. M. (2012). The discovery and development of belimumab: The anti-BLyS-lupus connection. Nature Biotechnology, 30(1), 69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Plüß, M., Piantoni, S., Tampe, B., Kim, A. H. J., & Korsten, P. (2022). Belimumab for systemic lupus erythematosus—Focus on lupus nephritis. Human Vaccines & Immunotherapeutics, 18(5), 2072143.

    Article  Google Scholar 

  183. Liu, L., Lu, J., Allan, B. W., Tang, Y., Tetreault, J., Chow, C. K., Barmettler, B., Nelson, J., Bina, H., Huang, L., Wroblewski, V. J., & Kikly, K. (2016). Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. Journal of Inflammation Research, 9, 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mussai, F., Campana, D., Bhojwani, D., Stetler-Stevenson, M., Steinberg, S. M., Wayne, A. S., & Pastan, I. (2010). Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. British Journal of Haematology, 150(3), 352–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J., & Pastan, I. (2002). Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clinical Cancer Research, 8(4), 995–1002.

    CAS  PubMed  Google Scholar 

  186. Alderson, R. F., Escandon, E., Chen, T., Yeung, P., Hodges, D., Geng, W., Fitzgerald, D. J., Kreitman, R. J., Pastan, I., & Fox, J. A. (2006). Characterization of CAT-8015: A Pseudomonas exotoxin based immunotoxin for the treatment of CD22-related hematological malignancies. Cancer Research, 66, 877.

    Google Scholar 

  187. de Haard, H. J., van Neer, N., Reurs, A., Hufton, S. E., Roovers, R. C., Henderikx, P., de Bruïne, A. P., Arends, J. W., & Hoogenboom, H. R. (1999). A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. Journal of Biological Chemistry, 274(26), 18218–18230.

    Article  PubMed  Google Scholar 

  188. Liu, M., Zhang, H., Jimenez, X., Ludwig, D., Witte, L., Bohlen, P., Hicklin, D., & Zhu, Z. (2004). Identification and characterization of a fully human antibody directed against epidermal growth factor receptor for cancer therapy. Cancer Research, 64(7 Supplement), 163.

    Google Scholar 

  189. Lu, D., Zhang, H., Ludwig, D., Persaud, A., Jimenez, X., Burtrum, D., Balderes, P., Liu, M., Bohlen, P., Witte, L., & Zhu, Z. (2004). Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. Journal of Biological Chemistry, 279(4), 2856–2865.

    Article  CAS  PubMed  Google Scholar 

  190. Li, S., Kussie, P., & Ferguson, K. M. (2008). Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Structure, 16(2), 216–227.

    Article  CAS  PubMed  Google Scholar 

  191. Lu, D., Zhang, H., Koo, H., Tonra, J., Balderes, P., Prewett, M., Corcoran, E., Mangalampalli, V., Bassi, R., Anselma, D., Patel, D., Kang, X., Ludwig, D. L., Hicklin, D. J., Bohlen, P., Witte, L., & Zhu, Z. (2005). A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. Journal of Biological Chemistry, 280(20), 19665–19672.

    Article  CAS  PubMed  Google Scholar 

  192. Prewett, M., Tonra, J., Rajiv, B., Hooper, A., Makhoul, G., Finnerty, B., Witte, L., Bohlen, P., Zhu, Z., & Hicklin, D. (2004). Antitumor activity of a novel, human anti-epidermal growth factor receptor (EGFR) monoclonal antibody (IMC-11F8) in human tumor xenograft models. Proceedings of the American Association for Cancer Research, 45, abstract 5353.

    Google Scholar 

  193. Kuenen, B., Witteveen, P. O., Ruijter, R., Giaccone, G., Dontabhaktuni, A., Fox, F., Katz, T., Youssoufian, H., Zhu, J., Rowinsky, E. K., & Voest, E. E. (2010). A phase I pharmacologic study of necitumumab (IMC-11F8), a fully human IgG1 monoclonal antibody directed against EGFR in patients with advanced solid malignancies. Clinical Cancer Research, 16(6), 1915–1923.

    Article  CAS  PubMed  Google Scholar 

  194. Smith, D. C., Powderly, J., Lee, J. J., Shepard, D. R., Wallin, J., Chaudhary, A., Chao, G. Y., Ng, W. T., Mitchell, M. I., Grau, G., Kurek, R., & LoRusso, P. (2016). Evaluation of the effect of necitumumab on the corrected QT interval in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 78(2), 271–280.

    Article  CAS  PubMed  Google Scholar 

  195. Muller, O., Bartunek, J., Hamilos, M., Berza, C. T., Mangiacapra, F., Ntalianis, A., Vercruysse, K., Duby, C., Wijns, W., De Bruyne, B., Heyndrickx, G. R., Vanderheyden, M., Holz, J. B., & Barbato, E. (2013). von Willebrand factor inhibition improves endothelial function in patients with stable angina. Journal of Cardiovascular Translational Research, 6(3), 364–370.

    Article  PubMed  Google Scholar 

  196. Scully, M., Cataland, S. R., Peyvandi, F., Coppo, P., Knöbl, P., Kremer Hovinga, J. A., Metjian, A., de la Rubia, J., Pavenski, K., Callewaert, F., Biswas, D., De Winter, H., & Zeldin, R. K. (2019). Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. New England Journal of Medicine, 380(4), 335–346.

    Article  CAS  PubMed  Google Scholar 

  197. Lu, D., Jimenez, X., Zhang, H., Bohlen, P., Witte, L., & Zhu, Z. (2002). Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. International Journal of Cancer, 97(3), 393–399.

    Article  CAS  PubMed  Google Scholar 

  198. Clarke, J. M., & Hurwitz, H. I. (2013). Targeted inhibition of VEGF receptor 2: An update on ramucirumab. Expert Opinion on Biological Therapy, 13(8), 1187–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H. W., McKay, P., de Vos, A. M., & Lowman, H. B. (1999). Selection and analysis of an optimized anti-VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. Journal of Molecular Biology, 293(4), 865–881.

    Article  CAS  PubMed  Google Scholar 

  200. Rosenfeld, P. J., Brown, D. M., Heier, J. S., Boyer, D. S., Kaiser, P. K., Chung, C. Y., & Kim, R. Y. (2006). Ranibizumab for neovascular age-related macular degeneration. New England Journal of Medicine, 355(14), 1419–1431.

    Article  CAS  PubMed  Google Scholar 

  201. Mazumdar, S. (2009). Raxibacumab. MAbs, 1(6), 531–538.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kummerfeldt, C. E. (2014). Raxibacumab: Potential role in the treatment of inhalational anthrax. Infect Drug Resist, 7, 101–109.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Nogueira, M., & Torres, T. (2019). Guselkumab for the treatment of psoriasis—Evidence to date. Drugs Context, 8, 212594.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Megna, M., Balato, A., Raimondo, A., & Balato, N. (2018). Guselkumab for the treatment of psoriasis. Expert Opinion on Biological Therapy, 18(4), 459–468.

    Article  CAS  PubMed  Google Scholar 

  205. Hoet, R. M., Cohen, E. H., Kent, R. B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., van Hegelsom, R., Neer, N. C., Nastri, H. G., Rondon, I. J., Leeds, J. A., Hufton, S. E., Huang, L., Kashin, I., Devlin, M., … Ladner, R. C. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nature Biotechnology, 23(3), 344–348.

    Article  CAS  PubMed  Google Scholar 

  206. Kenniston, J. A., Faucette, R. R., Martik, D., Comeau, S. R., Lindberg, A. P., Kopacz, K. J., Conley, G. P., Chen, J., Viswanathan, M., Kastrapeli, N., Cosic, J., Mason, S., DiLeo, M., Abendroth, J., Kuzmic, P., Ladner, R. C., Edwards, T. E., TenHoor, C., Adelman, B. A., … Sexton, D. J. (2014). Inhibition of plasma kallikrein by a highly specific active site blocking antibody. Journal of Biological Chemistry, 289(34), 23596–23608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vallurupalli, M., & Berliner, N. (2019). Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood, 134(21), 1783–1786.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lounder, D. T., Bin, Q., de Min, C., & Jordan, M. B. (2019). Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Advances, 3(1), 47–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Das, R., Guan, P., Sprague, L., Verbist, K., Tedrick, P., An, Q. A., Cheng, C., Kurachi, M., Levine, R., Wherry, E. J., Canna, S. W., Behrens, E. M., & Nichols, K. E. (2016). Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 127(13), 1666–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nixon, A. E., Sexton, D. J., & Ladner, R. C. (2014). Drugs derived from phage display: From candidate identification to clinical practice. MAbs, 6(1), 73–85.

    Article  PubMed  Google Scholar 

  211. Cwirla, S. E., Balasubramanian, P., Duffin, D. J., Wagstrom, C. R., Gates, C. M., Singer, S. C., Davis, A. M., Tansik, R. L., Mattheakis, L. C., Boytos, C. M., Schatz, P. J., Baccanari, D. P., Wrighton, N. C., Barrett, R. W., & Dower, W. J. (1997). Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science, 276(5319), 1696–1699.

    Article  CAS  PubMed  Google Scholar 

  212. Kuter, D. J., Bussel, J. B., Lyons, R. M., Pullarkat, V., Gernsheimer, T. B., Senecal, F. M., Aledort, L. M., George, J. N., Kessler, C. M., Sanz, M. A., Liebman, H. A., Slovick, F. T., de Wolf, J. T., Bourgeois, E., Guthrie, T. H., Jr., Newland, A., Wasser, J. S., Hamburg, S. I., Grande, C., … Nichol, J. L. (2008). Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: A double-blind randomised controlled trial. Lancet, 371(9610), 395–403.

    Article  CAS  PubMed  Google Scholar 

  213. Bussel, J. B., Kuter, D. J., Pullarkat, V., Lyons, R. M., Guo, M., & Nichol, J. L. (2009). Safety and efficacy of long-term treatment with romiplostim in thrombocytopenic patients with chronic ITP. Blood, 113(10), 2161–2171.

    Article  CAS  PubMed  Google Scholar 

  214. Wong, R. S. M. (2022). Safety and efficacy of pegcetacoplan in paroxysmal nocturnal hemoglobinuria. Therapeutic Advances in Hematology, 13, 20406207221114670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gerber, G. F., & Brodsky, R. A. (2022). Pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Blood, 139(23), 3361–3365.

    Article  CAS  PubMed  Google Scholar 

  216. Sahu, A., Kay, B. K., & Lambris, J. D. (1996). Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. The Journal of Immunology, 157(2), 884–891.

    Article  CAS  PubMed  Google Scholar 

  217. Hammers, C. M., & Stanley, J. R. (2014). Antibody phage display: Technique and applications. The Journal of Investigative Dermatology, 134(2), 1–5.

    Article  PubMed  Google Scholar 

  218. Ebrahimizadeh, W., & Rajabibazl, M. (2014). Bacteriophage vehicles for phage display: Biology, mechanism, and application. Current Microbiology, 69(2), 109–120.

    Article  CAS  PubMed  Google Scholar 

  219. Garcia-Doval, C., & van Raaij, M. J. (2012). Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proceedings of the National Academy of Sciences U S A, 109(24), 9390–9395.

    Article  CAS  Google Scholar 

  220. Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1), 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Roth, K. D. R., Wenzel, E. V., Ruschig, M., Steinke, S., Langreder, N., Heine, P. A., Schneider, K. T., Ballmann, R., Fühner, V., Kuhn, P., Schirrmann, T., Frenzel, A., Dübel, S., Schubert, M., Moreira, G., Bertoglio, F., Russo, G., & Hust, M. (2021). Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Frontiers in Cellular and Infection Microbiology, 11, 697876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chan, C. E., Lim, A. P., MacAry, P. A., & Hanson, B. J. (2014). The role of phage display in therapeutic antibody discovery. International Immunology, 26(12), 649–657.

    Article  CAS  PubMed  Google Scholar 

  223. Sadanandam, A., Varney, M. L., Kinarsky, L., Ali, H., Mosley, R. L., & Singh, R. K. (2007). Identification of functional cell adhesion molecules with a potential role in metastasis by a combination of in vivo phage display and in silico analysis. OMICS: A Journal of Integrative Biology, 11(1), 41–57.

    Article  CAS  PubMed  Google Scholar 

  224. Alizadeh, A. A., Hamzeh-Mivehroud, M., Farajzadeh, M., & Dastmalchi, S. (2017). Identification of novel peptides against TNF-α using phage display technique and in silico modeling of their modes of binding. European Journal of Pharmaceutical Sciences, 96, 490–498.

    Article  CAS  PubMed  Google Scholar 

  225. Ravn, U., Gueneau, F., Baerlocher, L., Osteras, M., Desmurs, M., Malinge, P., Magistrelli, G., Farinelli, L., Kosco-Vilbois, M. H., & Fischer, N. (2010). By-passing in vitro screening–next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Research, 38(21), e193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Newman, M. R., & Benoit, D. S. W. (2018). In vivo translation of peptide-targeted drug delivery systems discovered by phage display. Bioconjugate Chemistry, 29(7), 2161–2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Hu, N., Qiao, C., Wang, J., Wang, Z., Li, X., Zhou, L., Wu, J., Zhang, D., Feng, J., Shen, B., Zhang, J., & Luo, L. (2021). Identification of a novel protective human monoclonal antibody, LXY8, that targets the key neutralizing epitopes of staphylococcal enterotoxin B. Biochemical and Biophysical Research Communications, 549, 120–127.

    Article  CAS  PubMed  Google Scholar 

  228. Haque, A., & Tonks, N. K. (2012). The use of phage display to generate conformation-sensor recombinant antibodies. Nature Protocols, 7(12), 2127–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Gustchina, E., Louis, J. M., Frisch, C., Ylera, F., Lechner, A., Bewley, C. A., & Clore, G. M. (2009). Affinity maturation by targeted diversification of the CDR-H2 loop of a monoclonal Fab derived from a synthetic naïve human antibody library and directed against the internal trimeric coiled-coil of gp41 yields a set of Fabs with improved HIV-1 neutralization potency and breadth. Virology, 393(1), 112–119.

    Article  CAS  PubMed  Google Scholar 

  230. Nam, D. H., & Ge, X. (2018). Generation of highly selective MMP antibody inhibitors. Methods in Molecular Biology, 1731, 307–324.

    Article  CAS  PubMed  Google Scholar 

  231. Gray, B. P., Li, S., & Brown, K. C. (2013). From phage display to nanoparticle delivery: Functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjugate Chemistry, 24(1), 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Brown, K. C. (2010). Peptidic tumor targeting agents: The road from phage display peptide selections to clinical applications. Current Pharmaceutical Design, 16(9), 1040–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Verheust, C., Pauwels, K., Mahillon, J., Helinski, D. R., & Herman, P. (2010). Contained use of bacteriophages: Risk assessment and biosafety recommendations. Applied Biosafety, 15(1), 32–44.

    Article  Google Scholar 

  234. Gao, B., Han, J., & Reddy, S. T. (2022). Learning what not to select for in antibody drug discovery. Cell Reports Methods, 2(7), 100258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Larocca, D., Burg, M. A., Jensen-Pergakes, K., Ravey, E. P., Gonzalez, A. M., & Baird, A. (2002). Evolving phage vectors for cell targeted gene delivery. Current Pharmaceutical Biotechnology, 3(1), 45–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran for providing research facilities and financial support toward the MSc thesis of the first author (grant no 66554).

Funding

This study was supported by the Drug Applied Research Center (grant no. 66554) Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. literature search and data analysis were performed by Samaneh Jahandar-Lashaki, Aref Faraji-Barhagh, Zahra Hosseini, and Nasim Bakhtiyari. Samaneh Jahandar-Lashaki, Aref Faraji-Barhagh, and Nasim Bakhtiyari wrote the first draft; Samaneh Jahandar-Lashaki produced the figures and Tables; Safar Farajnia and Leila Rahbarnia revised the manuscript. Safar Farajnia was responsible for supervision of the entire project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Safar Farajnia.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This work was approved by ethical research committee of Tabriz University of Medical Science, Tabriz, Iran (IR.TBZMED.VCR.REC.1399.385).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahandar-Lashaki, S., Farajnia, S., Faraji-Barhagh, A. et al. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01195-6

Keywords

Navigation