Skip to main content

Advertisement

Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Site directional migration is an important biological event and an essential behavior for latent migratory cells. A migratory cell maintains its motility, survival, and proliferation abilities by a network of signaling pathways where CXCR4/SDF signaling route plays crucial role for directed homing of a polarized cell. The chicken embryo due to its specific vasculature modality has been used as a valuable model for organogenesis, migration, cancer, and metastasis. In this research, the regulatory regions of chicken CXCR4 gene have been characterized in a chicken hematopoietic lymphoblast cell line (MSB1). A region extending from −2000 bp upstream of CXCR4 gene to +68 after its transcriptional start site, in addition to two other mutant fragments were constructed and cloned in a promoter-less reporter vector. Promoter activity was analyzed by quantitative real-time RT-PCR and flow cytometry techniques. Our findings show that the full sequence from −2000 to +68 bp of CXCR4 regulatory region is required for maximum promoter functionality, while the mutant CXCR4 promoter fragments show a partial promoter activity. The chicken CXCR4 promoter validated in this study could be used for characterization of directed migratory cells in chicken development and disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bleul, C. C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., et al. (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382(6594), 829–833.

    Article  CAS  Google Scholar 

  2. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science (New York, NY), 283(5403), 845–848.

    Article  CAS  Google Scholar 

  3. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.

    Article  CAS  Google Scholar 

  4. Kioi, M., Vogel, H., Schultz, G., Hoffman, R. M., Harsh, G. R., & Brown, J. M. (2010). Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of Clinical Investigation, 120(3), 694–705.

    Article  CAS  Google Scholar 

  5. Fareh, M., Turchi, L., Virolle, V., Debruyne, D., Almairac, F., de-la-Forest Divonne, S., et al. (2012). The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell death and differentiation, 19(2), 232–244.

    Article  CAS  Google Scholar 

  6. Carpenter, R. L., & Lo, H. W. (2012). Hedgehog pathway and GLI1 isoforms in human cancer. Discovery Medicine, 13(69), 105–113.

    Google Scholar 

  7. Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology, 14(3), 171–179.

    Article  CAS  Google Scholar 

  8. Zlotnik, A. (2006). Chemokines and cancer. International Journal of Cancer, 119(9), 2026–2029.

    Article  CAS  Google Scholar 

  9. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell, 111(5), 647–659.

    Article  CAS  Google Scholar 

  10. Molyneaux, K. A., Zinszner, H., Kunwar, P. S., Schaible, K., Stebler, J., Sunshine, M. J., et al. (2003). The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development, 130(18), 4279–4286.

    Article  CAS  Google Scholar 

  11. Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chicken and mouse embryo: the role of the chemokine SDF-1/CXCL12. Development Biology, 272(2), 351–361.

    Article  CAS  Google Scholar 

  12. Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of biological Chemistry, 273(8), 4754–4760.

    Article  CAS  Google Scholar 

  13. Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas. Molecular Cancer Research: MCR, 8(1), 1–14.

    Article  CAS  Google Scholar 

  14. Moriuchi, M., Moriuchi, H., Turner, W., & Fauci, A. S. (1997). Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. Journal of Immunology, 159(9), 4322–4329.

    CAS  Google Scholar 

  15. Mukherjee, D., & Zhao, J. (2013). The Role of chemokine receptor CXCR4 in breast cancer metastasis. American journal of cancer Research, 3(1), 46–57.

    CAS  Google Scholar 

  16. Al-Souhibani, N., Al-Ghamdi, M., Al-Ahmadi, W., & Khabar, K. S. (2014). Posttranscriptional control of the chemokine receptor CXCR4 expression in cancer cells. Carcinogenesis, 35(9), 1983–1992.

    Article  CAS  Google Scholar 

  17. Busillo, J. M., & Benovic, J. L. (2007). Regulation of CXCR4 signaling. Biochimica et Biophysica Acta, 1768(4), 952–963.

    Article  CAS  Google Scholar 

  18. Haviv, Y. S., van Houdt, W. J., Lu, B., Curiel, D. T., & Zhu, Z. B. (2004). Transcriptional targeting in renal cancer cell lines via the human CXCR4 promoter. Molecular Cancer Therapeutics, 3(6), 687–691.

    CAS  Google Scholar 

  19. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. The Journal of Experimental Medicine, 198(9), 1391–1402.

    Article  CAS  Google Scholar 

  20. Mehta, S. A., Christopherson, K. W., Bhat-Nakshatri, P., Goulet, R. J, Jr, Broxmeyer, H. E., Kopelovich, L., et al. (2007). Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene, 26(23), 3329–3337.

    Article  CAS  Google Scholar 

  21. Gu, S., Chen, L., Hong, Q., Yan, T., Zhuang, Z., Wang, Q., et al. (2011). PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells. Acta Biochimica et Biophysica Sinica, 43(10), 771–778.

    Article  CAS  Google Scholar 

  22. Zhu, Z. B., Makhija, S. K., Lu, B., Wang, M., Kaliberova, L., Liu, B., et al. (2004). Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Therapy, 11(7), 645–648.

    Article  CAS  Google Scholar 

  23. Khanna, C., & Hunter, K. (2005). Modeling metastasis in vivo. Carcinogenesis, 26(3), 513–523.

    Article  CAS  Google Scholar 

  24. Sato, Y. (2013). Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling. Development, Growth and Differentiation, 55(1), 113–129.

    Article  Google Scholar 

  25. Sakakibara, A., & Horwitz, A. F. (2006). Mechanism of polarized protrusion formation on neuronal precursors migrating in the developing chicken cerebellum. Journal of Cell Science, 119(Pt 17), 3583–3592.

    Article  CAS  Google Scholar 

  26. Stern, C. D. (2004). The chicken embryo–past, present and future as a model system in developmental biology. Mechanisms of Development, 121(9), 1011–1013.

    Article  CAS  Google Scholar 

  27. Vergara, M. N., & Canto-Soler, M. V. (2012). Rediscovering the chicken embryo as a model to study retinal development. Neural Development, 7, 22.

    Article  Google Scholar 

  28. Zijlstra, A., Mellor, R., Panzarella, G., Aimes, R. T., Hooper, J. D., Marchenko, N. D., et al. (2002). A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Research, 62(23), 7083–7092.

    CAS  Google Scholar 

  29. Eliceiri, B. P., Klemke, R., Stromblad, S., & Cheresh, D. A. (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. The Journal of Cell Biology, 140(5), 1255–1263.

    Article  CAS  Google Scholar 

  30. Zhang, W., Wu, Y., Yan, Q., Ma, F., Shi, X., Zhao, Y., et al. (2014). Deferoxamine enhances cell migration and invasion through promotion of HIF-1alpha expression and epithelial-mesenchymal transition in colorectal cancer. Oncology Reports, 31(1), 111–116.

    CAS  Google Scholar 

  31. Ducrest, A. L., Amacker, M., Lingner, J., & Nabholz, M. (2002). Detection of promoter activity by flow cytometric analysis of GFP reporter expression. Nucleic Acids Research, 30(14), e65.

    Article  Google Scholar 

  32. Soboleski, M. R., Oaks, J., & Halford, W. P. (2005). Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(3), 440–442.

    CAS  Google Scholar 

  33. Parcells, M. S., Dienglewicz, R. L., Anderson, A. S., & Morgan, R. W. (1999). Recombinant Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a marker gene within the context of the MDV genome. Journal of Virology, 73(2), 1362–1373.

    CAS  Google Scholar 

  34. Ross, L. J. N., Bumstead, J., & Powell, P. C. (1982). Susceptibility of Marek’s disease lymphoblastoid cell lines to infection with influenza and pseudorabies viruses and the protective effect of immunization with influenza virus-infected lymphoblastoid cells. Archives of Virology, 74(2–3), 101–110.

    Article  CAS  Google Scholar 

  35. Higashihara, T., Kunihiro, K., Yamaki, T., Okada, I., Kodama, H., Izawa, H., et al. (1984). Characterization of transplantable subline MDCC-MSB1-Clo. 18 derived from MDCC-MSB1. The. Japanese Journal of Veterinary Research, 32(3), 155–163.

    CAS  Google Scholar 

  36. Bustin, S. A., Gyselman, V. G., Williams, N. S., & Dorudi, S. (1999). Detection of cytokeratins 19/20 and guanylyl cyclase C in peripheral blood of colorectal cancer patients. British Journal of Cancer, 79(11–12), 1813–1820.

    Article  CAS  Google Scholar 

  37. Maroni, P., Bendinelli, P., Matteucci, E., & Desiderio, M. A. (2007). HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis, 28(2), 267–279.

    Article  CAS  Google Scholar 

  38. Wang, F., Li, Y., Zhou, J., Xu, J., Peng, C., Ye, F., et al. (2011). miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. The American Journal of Pathology, 179(5), 2580–2588.

    Article  CAS  Google Scholar 

  39. Chou, C.-W., & Chen, C.-C. (2008). HDAC inhibition upregulates the expression of angiostatic ADAMTS1. FEBS Letters, 582(29), 4059–4065.

    Article  CAS  Google Scholar 

  40. Guo, M., Cai, C., Zhao, G., Qiu, X., Zhao, H., Ma, Q., et al. (2014). Hypoxia promotes migration and induces CXCR4 expression via HIF-1alpha activation in human osteosarcoma. PLoS ONE, 9(3), e90518.

    Article  Google Scholar 

Download references

Acknowledgments

The research work in the laboratory of H.D. is supported by Grant Number 3/25064 from Ferdowsi University of Mashhad, Mashhad, Iran, and Grant Number 100311 from Council for Stem Cell Sciences and Technologies and The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesam Dehghani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: Sequence alignment of the 3 variant promoter regions of the chicken CXCR4 gene (TIFF 18753 kb)

12033_2016_9917_MOESM2_ESM.tif

Supplementary Fig. 2: Validation of subcloning of the cloned chicken CXCR4 promoter variants. The length of cloned promoter variants was validated by EcoRV and HindIII restriction enzyme double digestion and gel electrophoresis (TIFF 5639 kb)

Supplementary Fig. 3: RT-PCR analysis of the endogenous CXCR4 expression in MSB1 cell line (TIFF 3123 kb)

12033_2016_9917_MOESM4_ESM.tif

Supplementary Fig. 4: Analysis of melting, amplification, and standard curves for the expression of GFP induced by three promoter variants in chicken MSB1 cells. A) The melting curves, B) The amplification curves, and C) The standard curve produced from fivefold serial dilution of positive control cDNA samples (MSB1 cells transfected with CMV-GFP reporter) (TIFF 2401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es-haghi, M., Bassami, M. & Dehghani, H. Construction and Quantitative Validation of Chicken CXCR4 Expression Reporter. Mol Biotechnol 58, 202–211 (2016). https://doi.org/10.1007/s12033-016-9917-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9917-2

Keywords