Skip to main content

Advertisement

Immune checkpoint inhibitors promising role in cancer therapy: clinical evidence and immune-related adverse events

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering “ipilimumab” medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints. There are three approved categories including Programmed Death (PD-1) inhibitors (cemiplimab, nivolumab, and pembrolizumab), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Ipilimumab), and Programmed Death-Ligand 1 (PDL-1) (Avelumab). Although ICIs promisingly increase therapeutic response and cancer survival rates, using ICIs has demonstrated some limitations including autoimmune reactions and toxicities, requiring close monitoring. The present review endeavors to explicate the underlying principles of the MOA and pharmacokinetics of the approved ICIs in the realm of cancer induction, including an appraisal of their level of practice-based evidence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CDC:

Center for Disease Control and Prevention

ICIs:

Immune checkpoint inhibitors

CDC:

Center for disease control and prevention

PD-1:

Programmed death

PDL-1:

Programmed death-ligand 1

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

irAE:

Immune-related adverse events

NK:

Natural killer

NSCLC:

Non-small cell lung cancer

HHis:

Hedgehog inhibitors

NSC:

Neural stem cells

HNSCC:

Head and neck squamous cell carcinoma

CSCC:

Cutaneous squamous cell carcinoma

EGFR:

Epidermal growth factor receptor

NIR-PIT:

Near-infrared photoimmunotherapy

ALK:

Anaplastic lymphoma kinase

TMB:

Tumor mutational burden

MOA:

Mechanism of action

uHCC:

Unresectable hepatocellular carcinoma

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

ITSM:

Immunoreceptor-based switch motif

NSC:

Neural stem cells

NMIBC:

Non-muscle-invasive bladder cancer

RCT:

Randomized controlled trial

References

  1. Topi S, Santacroce L, Bottalico L, Ballini A, Inchingolo AD, Dipalma G, Charitos IA, Inchingolo F. Gastric cancer in history: a perspective interdisciplinary study. Cancers. 2020;12(2):264.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rius-Rocabert S, llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett. 2019;366(12):136.

    Article  Google Scholar 

  3. Pirš B, Škof E, Smrkolj V, Smrkolj Š. Overview of immune checkpoint inhibitors in gynecological cancer treatment. Cancers. 2022;14(3):631.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moujaess E, Haddad FG, Eid R, Kourie HR. The emerging use of immune checkpoint blockade in the adjuvant setting for solid tumors: a review. Immunotherapy. 2019;11(16):1409–22.

    Article  CAS  PubMed  Google Scholar 

  6. Yu X, Fang C, Zhang K, Su C. Recent advances in nanoparticles-based platforms targeting the PD-1/PD-L1 pathway for cancer treatment. Pharmaceutics. 2022;14(8):1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022;20(1):1–31.

    Article  Google Scholar 

  8. Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics. 2020;9(1):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simonaggio A, Michot JM, Voisin AL, Le Pavec J, Collins M, Lallart A, Cengizalp G, Vozy A, Laparra A, Varga A. Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol. 2019;5(9):1310–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oh SY, Kim S, Keam B, Kim TM, Kim D-W, Heo DS. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci Rep. 2021;11(1):1–11.

    Article  Google Scholar 

  11. Reddy HG, Schneider BJ, Tai AW. Immune checkpoint inhibitor-associated colitis and hepatitis. Clin Transl Gastroenterol. 2018;9(9):180.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Borcherding N, Kolb R, Gullicksrud J, Vikas P, Zhu Y, Zhang W. Keeping tumors in check: a mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. J Mol Biol. 2018;430(14):2014–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elmadfa I, Meyer AL. The role of the status of selected micronutrients in shaping the immune function. Endocr Metab Disord. 2019;19(8):1100–15.

    CAS  Google Scholar 

  14. Pradeu T. Philosophy of immunology. Cambridge: Cambridge University Press; 2020.

    Google Scholar 

  15. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Can Res. 2019;79(18):4557–66.

    Article  CAS  Google Scholar 

  16. Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14(1):1–29.

    Article  Google Scholar 

  17. Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol. 2021;13(9):979.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100.

    Article  PubMed  Google Scholar 

  19. Lentz RW, Colton MD, Mitra SS, Messersmith WA. Innate immune checkpoint inhibitors: the Next Breakthrough in Medical Oncology? Innate Immune Checkpoint Inhibitors in Medical Oncology. Mol Cancer Ther. 2021;20(6):961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee DH. Update of early phase clinical trials in cancer immunotherapy. BMB Rep. 2021;54(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J-W, Yang Y-H, Wu N, Wei J-F. Biosimilar monoclonal antibodies in China: a patent review. Bioengineered. 2022;13(6):14503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, Lambotte O, Mariette X, Prat A, Suárez-Almazor ME. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6(1):1–21.

    Article  Google Scholar 

  23. Kim ST, Chu Y, Misoi M, Suarez-Almazor ME, Tayar JH, Lu H, Buni M, Kramer J, Rodriguez E, Hussain Z. Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy. Nat Commun. 2022;13(1):1–19.

    Google Scholar 

  24. John P, Pulanco MC, Galbo PM, Wei Y, Ohaegbulam KC, Zheng D, Zang X. The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy. Nat Commun. 2022;13(1):1–15.

    Article  CAS  Google Scholar 

  25. Marable J, Ruiz D, Jaiswal AK, Bhattacharya R, Pantazes R, Agarwal P, Suryawanshi AS, Bedi D, Mishra A, Smith BF. Nanobody-based CTLA4 inhibitors for immune checkpoint blockade therapy of canine cancer patients. Sci Rep. 2021;11(1):1–12.

    Article  Google Scholar 

  26. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):1–3.

    Article  Google Scholar 

  27. Qi Z, Xu Z, Zhang L, Zou Y, Li J, Yan W, Li C, Liu N, Wu H. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat Commun. 2022;13(1):1–17.

    Article  Google Scholar 

  28. Valero C, Lee M, Hoen D, Weiss K, Kelly DW, Adusumilli PS, Paik PK, Plitas G, Ladanyi M, Postow MA. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat Commun. 2021;12(1):1–9.

    Article  Google Scholar 

  29. Wang J-B, Li P, Liu X-L, Zheng Q-L, Ma Y-B, Zhao Y-J, Xie J-W, Lin J-X, Lu J, Chen Q-Y. An immune checkpoint score system for prognostic evaluation and adjuvant chemotherapy selection in gastric cancer. Nat Commun. 2020;11(1):1–14.

    Article  Google Scholar 

  30. Mansh M. Ipilimumab and cancer immunotherapy: A new hope for advanced stage melanoma. Yale J Biol Med. 2011;84(4):381.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rolfo C, Caglevic C, Santarpia M, Araujo A, Giovannetti E, Gallardo CD, Pauwels M. Immunotherapy in NSCLC: a promising and revolutionary weapon. Immunotherapy. 2017;995:97–125.

    Article  CAS  Google Scholar 

  32. Wu G. Therapeutic effects of pembrolizumab combined with paclitaxel and cisplatin chemotherapy on advanced non squamous non-small cell lung cancer and influencing factors. Indian J Pharm Sci. 2021;83:120–6.

    Article  CAS  Google Scholar 

  33. Li J-X, Huang J-M, Jiang Z-B, Li R-Z, Sun A, Lai-Han Leung E, Yan P-Y. Current clinical progress of PD-1/PD-L1 im munotherapy and potential combination treatment in non–small cell lung cancer. Integr Cancer Ther. 2019;18:1534735419890.

    Article  Google Scholar 

  34. Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya LF, Lim AM, Chang ALS, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018;379:341–51.

    Article  CAS  PubMed  Google Scholar 

  35. Sun L, Zhang L, Yu J, Zhang Y, Pang X, Ma C, Shen M, Ruan S, Wasan HS, Qiu S. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–13.

    CAS  Google Scholar 

  36. Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther. 2021;21(7):945–62.

    Article  CAS  PubMed  Google Scholar 

  37. Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today. 2020;25(1):223–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pasello G, Pavan A, Attili I, Bortolami A, Bonanno L, Menis J, Conte P, Guarneri V. Real world data in the era of Immune Checkpoint Inhibitors (ICIs): increasing evidence and future applications in lung cancer. Cancer Treat Rev. 2020;87: 102031.

    Article  CAS  PubMed  Google Scholar 

  39. Wang M, Liu Y, Cheng Y, Wei Y, Wei X. Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochem Biophys Acta. 2019;1871(2):199–224.

    CAS  Google Scholar 

  40. Nakamura Y. Biomarkers for immune checkpoint inhibitor-mediated tumor response and adverse events. Front Med. 2019;6:119.

    Article  Google Scholar 

  41. Zhu Y, Zhao F, Li Z, Yu J. Current landscape and future directions of biomarkers for predicting responses to immune checkpoint inhibitors. Cancer Manag Res. 2018;10:2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yavuz BG, Hasanov E, Lee SS, Mohamed YI, Curran MA, Koay EJ, Cristini V, Kaseb AO. Current landscape and future directions of biomarkers for immunotherapy in hepatocellular carcinoma. J Hepatocell Carcinoma. 2021;8:1195.

    Article  Google Scholar 

  43. Lao Y, Shen D, Zhang W, He R, Jiang M. Immune checkpoint inhibitors in cancer therapy—how to overcome drug resistance? Cancers. 2022;14(15):3575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current state of knowledge on the immune checkpoint inhibitors in triple-negative breast cancer treatment: approaches efficacy, and challenges. Clin Med Insights. 2022;16:11795549221099868.

    Google Scholar 

  45. Leone P, Solimando AG, Fasano R, Argentiero A, Malerba E, Buonavoglia A, Lupo LG, De Re V, Silvestris N, Racanelli V. The evolving role of immune checkpoint inhibitors in hepatocellular carcinoma treatment. Vaccines. 2021;9(5):532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma K, Jin Q, Wang M, Li X, Zhang Y. Research progress and clinical application of predictive biomarker for immune checkpoint inhibitors. Expert Rev Mol Diagn. 2019;19(6):517–29.

    Article  CAS  PubMed  Google Scholar 

  47. Onuma AE, Zhang H, Huang H, Williams TM, Noonan A, Tsung A. Immune checkpoint inhibitors in hepatocellular cancer: current understanding on mechanisms of resistance and biomarkers of response to treatment. Gene Expr. 2020;20(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the’high-hanging fruit’. Nat Rev Drug Discov. 2018;17(3):197–223.

    Article  CAS  PubMed  Google Scholar 

  49. Song Y, Fu Y, Xie Q, Zhu B, Wang J, Zhang B. Anti-angiogenic agents in combination with immune checkpoint inhibitors: a promising strategy for cancer treatment. Front Immunol. 2020;11:1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang J, Chen F, Liu D, Gu F, Chen Z, Wang Y. Prognostic value of immune checkpoint molecules in breast cancer. Biosci Rep. 2020;40(7):BSR20201054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Darvin P, Toor SM, SasidharanNair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.

    Article  PubMed  Google Scholar 

  53. Melosky B, Juergens R, Hirsh V, McLeod D, Leighl N, Tsao MS, Card PB, Chu Q. Amplifying outcomes: checkpoint inhibitor combinations in first-line non-small cell lung cancer. Oncologist. 2020;25(1):64–77.

    Article  CAS  PubMed  Google Scholar 

  54. Chaft JE, Kris MG, Bunn PA, Wistuba II, Kwiatkowski DJ, Owen DH, Tang Y, Johnson BE, Lee JM, Lozanski G, Pietrzak M, Seweryn M, Byun WY, Schulze K, Nicholas A, Johnson A, Grindheim J, Hilz S, Shames DS, Rivard C, Toloza E, Haura EB, McNamee CJ, LCMC study investigators. Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial. Nat med. 2020;28(10):2155–61.

    Article  Google Scholar 

  55. Rizvi NA, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, Otterson GA, Campos LT, Gandara DR, Levy BP, Nair SG, Zalcman G, Wolf J, Souquet PJ, Baldini E, Cappuzzo F, Chouaid C, Dowlati A, Sanborn R. Lope, Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sezer A, Gümüş M, Bondarenko I, Özgüroğlu M, Gogishvili M, Turk HM, Cicin I, Bentsion D, Gladkov O, Clingan P, Sriuranpong V, Rizvi N, Gao B, Li S, Lee S, McGuire K, Chen CI, Makharadze T, Paydas S, Nechaeva M, Seebach F, Weinreich DM. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet. 2021;397(10274):592–604.

    Article  CAS  PubMed  Google Scholar 

  57. Davis KL, Merchant MS, Reid JM, Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ, Mackall CL. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020;214:541–50.

    Article  Google Scholar 

  58. Stratigos AJ, Sekulic A, Peris K, Bechter O, Prey S, Kaatz M, Lewis KD, Basset-Seguin N, Chang AL, Dalle S, Orland AF. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: an open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021;22(6):848–57.

    Article  CAS  PubMed  Google Scholar 

  59. Rosenberg JE, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balar AV, Kulkarni GS, Uchio EM, Boormans JL, Roumiguié M, Krieger LEM, Singer EA, Bajorin DF, Grivas P, Seo HK, Nishiyama H, Konety BR, Li H, Nam K, Kapadia E, Frenkl T, de Wit R. Pembrolizumab monotherapy for the treatment of non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 2021;22(7):919–30.

    Article  CAS  PubMed  Google Scholar 

  61. Kato K, Takahashi M, Okada M, Lin CY, Chin K, Kadowaki S, Ahn MJ, Hamamoto Y, Doki Y, Yen CC, Kubota Y, Kim SB, Hsu CH, Holtved E, Xynos I, Kodani M, Kitagawa Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(11):1506–17.

    Article  CAS  PubMed  Google Scholar 

  62. André T, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, de la Fouchardiere C, Rivera F, Elez E, Bendell J, Le DT, Yoshino T, Van Cutsem E, Yang P, Farooqui MZH, Marinello P, Diaz LA Jr, KEYNOTE-177 Investigators. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med. 2016;383(23):2207–18.

    Article  Google Scholar 

  63. Zeng D, Luo H, Li Y, Xiao J, Peng J, Ye Z, Zhou R, Yu Y, Wang G, Huang N, Wu J, Rong X, Sun L, Sun H, Qiu W, Xue Y, Bin J, Liao Y, Li N, Shi M, Kim KM, Liao W. Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J Immunother Cancer. 2021;9(8):e002467.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Janjigian YY, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A, Liu T, Schenker M, Yanez P, Tehfe M, Kowalyszyn R, Karamouzis MV, Bruges R, Zander T, Pazo-Cid R, Hitre E, Feeney K, Cleary JM. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gupta B, Kumar N. Global epidemiology of head and neck cancers: a continuing challenge. Oncology. 2016;91:13–23.

    Article  PubMed  Google Scholar 

  66. Schoenfeld JD, Jo VY, Rawal B, Chen YH, Catalano PS, Lako A, Ciantra Z, Weirather JL, Criscitiello S, Luoma A, Chau N, Lorch J, Kass JI, Annino D, Goguen L, Desai A, Ross B, Shah HJ, Jacene HA, Margalit DN, Tishler RB, Wucherpfennig KW, Rodig SJ. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA Oncol. 2020;6(10):1563–70.

    Article  PubMed  Google Scholar 

  67. Swoboda A. Immune checkpoint blockade for breast cancer. Cancer Treat Res. 2018;173:155–65.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Musacchio L, Caruso G, Santangelo G, Fischetti M, Tomao F, Perniola G, Palaia I, Muzii L, Pignata S, Benedetti Panici P, Di Donato V. Immune checkpoint inhibitors: a promising choice for endometrial cancer patients. J Clin Med. 2020;9(6):1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Makker V, CasadoHerráez A, Santin AD, Colomba E, Miller DS, Fujiwara K, Pignata S, Baron-Hay S, Ray-Coquard I, Shapira-Frommer R, Ushijima K, Sakata J, Yonemori K, Kim YM, Guerra EM, Sanli UA, McCormack MM, Smith AD, Keefe S, Bird S, Dutta L. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386(5):437–48.

    Article  CAS  PubMed  Google Scholar 

  70. Capdevila J, Ernst T, Ponce Aix S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto PA, Fasolo A, Führer D, Hütter-Krönke ML, Forde PM, Wrona A, Santoro A, Sadow PM, Szpakowski S, Wu H, Bostel G, Faris J, Cameron S, Varga A. PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol. 2020;38(23):2620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R, Chen CL, Gupta D. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moslehi JJ, Salem J-E, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. The Lancet. 2018;391(10124):933.

    Article  Google Scholar 

  74. Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, Monestier S, Grob J-J, Scemama U, Jacquier A. Clinical features, management, and outcomes of immune checkpoint inhibitor–related cardiotoxicity. Circulation. 2017;136(21):2085–7.

    Article  PubMed  Google Scholar 

  75. Curry JL, Tetzlaff MT, Nagarajan P, Drucker C, Diab A, Hymes SR, Duvic M, Hwu WJ, Wargo JA, Torres-Cabala CA. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44(2):158–76.

    Article  PubMed  Google Scholar 

  76. Minkis K, Garden BC, Wu S, Pulitzer MP, Lacouture ME. The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2013;69(3):e121–8.

    Article  CAS  PubMed  Google Scholar 

  77. Choi J, Lee SY, Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw (2020) 20(1).

  78. Belum V, Benhuri B, Postow M, Hellmann M, Lesokhin A, Segal N, Motzer R, Wu S, Busam K, Wolchok J. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB. Leming PD Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  Google Scholar 

  80. Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21(2):371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res. 2019;51(03):145–56.

    Article  PubMed  Google Scholar 

  82. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45.

    Article  PubMed  Google Scholar 

  83. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, Tolaney SM. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):173–82.

    Article  PubMed  Google Scholar 

  84. Darnell EP, Mooradian MJ, Baruch EN, Yilmaz M, Reynolds KL. Immune-related adverse events (irAEs): diagnosis, management, and clinical pearls. Curr Oncol Rep. 2020;22(4):1–11.

    Article  Google Scholar 

  85. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  86. Schachter J, Ribas A, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank C, Petrella TM, Hamid O, Zhou H, Ebbinghaus S, Ibrahim N, Robert C. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

    Article  CAS  PubMed  Google Scholar 

  87. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Malet A, Antoni G, Collins M, Soularue E, Marthey L, Vaysse T, Coutzac C, Chaput N, Mateus C, Robert C, Carbonnel F. Evolution and recurrence of gastrointestinal immune-related adverse events induced by immune checkpoint inhibitors. Eur J Cancer. 1990;106(2019):106–14.

    Google Scholar 

  89. GeukesFoppen MH, Rozeman EA, van Wilpe S, Postma C, Snaebjornsson P, van Thienen JV, van Leerdam ME, van Heuvel M, Blank CU, van Dieren J, Haanen J. Immune checkpoint inhibition-related colitis: symptoms, endoscopic features, histology and response to management. ESMO Open. 2018;3(1):e000278.

    Article  Google Scholar 

  90. Gupta A, De Felice KM, Loftus EV Jr, Khanna S. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther. 2015;42(4):406–17.

    Article  CAS  PubMed  Google Scholar 

  91. Marthey L, Mateus C, Mussini C, Nachury M, Nancey S, Grange F, Zallot C, Peyrin-Biroulet L, Rahier JF, Bourdier de Beauregard M, Mortier L, Coutzac C, Soularue E, Lanoy E, Kapel N, Planchard D, Chaput N, Robert C, Carbonnel F. Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease. J Crohns Colitis. 2016;10(4):395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lidar M, Giat E, Garelick D, Horowitz Y, Amital H, Steinberg-Silman Y, Schachter J, Shapira-Frommer R, Markel G. Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmun Rev. 2018;17(3):284–9.

    Article  CAS  PubMed  Google Scholar 

  93. Baraibar I, Melero I, Ponz-Sarvise M, Castanon E. Safety and tolerability of immune checkpoint inhibitors (PD-1 and PD-L1) in cancer. Drug Saf. 2019;42(2):281–94.

    Article  CAS  PubMed  Google Scholar 

  94. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner JM, Ginex P, Hallmeyer S, Holter Chakrabarty J, Leighl NB, Mammen JS, McDermott DF, Naing A, Nastoupil LJ, Phillips T, Porter LD, Puzanov I, Reichner CA, Santomasso BD, Seigel C, Spira A, Suarez-Almazor ME, Wang Y, Weber JS, Wolchok JD, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68.

    Article  CAS  PubMed  Google Scholar 

  95. Sui JD, Wang Y, Wan Y, Wu YZ. Risk of hematologic toxicities with programmed cell death-1 inhibitors in cancer patients: a meta-analysis of current studies. Drug Des Dev Ther. 2018;12:1645–57.

    Article  CAS  Google Scholar 

  96. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, Das S, Beckermann KE, Ha L, Rathmell WK, Ancell KK, Balko JM, Bowman C, Davis EJ, Chism DD, Horn L, Long GV, Carlino MS, Lebrun-Vignes B, Eroglu Z, Hassel JC, Menzies AM, Sosman JA, Sullivan RJ, Moslehi JJ, Johnson DB. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Touat M, Talmasov D, Ricard D, Psimaras D. Neurological toxicities associated with immune-checkpoint inhibitors. Curr Opin Neurol. 2017;30(6):659–68.

    Article  CAS  PubMed  Google Scholar 

  98. Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article. Curr Opin Oncol. 2016;28(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  99. Sun MM, Levinson RD, Filipowicz A, Anesi S, Kaplan HJ, Wei Wang MD, Goldstein DA, Gangaputra S, Swan RT, Sen HN, Gordon LK. Uveitis in patients treated with CTLA-4 and PD-1 checkpoint blockade inhibition. Ocular Immunol Inflamm. 2020;28(2):217–27.

    Article  CAS  Google Scholar 

  100. Postow MA. Managing immune checkpoint-blocking antibody side effects, American Society of Clinical Oncology educational book. Am Soc Clin Oncol (2015) 76–83.

  101. Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv119–42.

    Article  CAS  PubMed  Google Scholar 

  102. Sternschein R, Moll M, Ng J, D’Ambrosio C. Immune checkpoint Inhibitor-related pneumonitis incidence, risk factors, and clinical and radiographic features. Am J Respir Crit Care Med. 2018;198(7):951–3.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nishino M, Sholl LM, Hodi FS, Hatabu H, Ramaiya NH. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373(3):288–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Voskens CJ, Goldinger SM, Loquai C, Robert C, Kaehler KC, Berking C, Bergmann T, Bockmeyer CL, Eigentler T, Fluck M, Garbe C, Gutzmer R, Grabbe S, Hauschild A, Hein R, Hundorfean G, Justich A, Keller U, Klein C, Mateus C, Mohr P, Paetzold S, Satzger I, Schadendorf D, Schlaeppi M, Schuler G, Schuler-Thurner B, Trefzer U, Ulrich J, Vaubel J, von Moos R, Weder P, Wilhelm T, Göppner D, Dummer R, Heinzerling LM. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS ONE. 2013;8(1): e53745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chhabra N, Kennedy J. A review of cancer immunotherapy toxicity: immune checkpoint inhibitors. J Med Toxicol. 2021;17(4):411–24.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Belliere J, Meyer N, Mazieres J, Ollier S, Boulinguez S, Delas A, Ribes D, Faguer S. Acute interstitial nephritis related to immune checkpoint inhibitors. Br J Cancer. 2016;115(12):1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meng X, Liu Y, Zhang J, Teng F, Xing L, Yu J. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: new development and challenges. Cancer Lett. 2017;405:29–37.

    Article  CAS  PubMed  Google Scholar 

  109. Leprieur EG, Dumenil C, Julie C, Giraud V, Dumoulin J, Labrune S, Chinet T. Immunotherapy revolutionises non-small-cell lung cancer therapy: results, perspectives and new challenges. Eur J Cancer. 2017;78:16–23.

    Article  Google Scholar 

  110. Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, Gerber DE, Shepherd FA, Antonia S, Goldman JW. Nivolumab monotherapy for first-line treatment of advanced non–small-cell lung cancer. J Clin Oncol. 2016;34(25):2980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang L, Zhao D, Qin K, Rehman FU, Zhang X. Effect and biomarker of nivolumab for non–small-cell lung cancer. Biomed Pharmacother. 2019;117: 109199.

    Article  CAS  PubMed  Google Scholar 

  112. Socinski MA, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA. IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC. J Thorac Oncol. 2021;16(11):1909–24.

    Article  CAS  PubMed  Google Scholar 

  113. West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, Nishio M, Kim E, Morris S, Zou W. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J Immunother Cancer (2022) 10(2).

  114. Zhou J, Mahoney KM, Giobbie-Hurder A, Zhao F, Lee S, Liao X, Rodig S, Li J, Wu X, Butterfield LH. Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockadesoluble PD-L1 in melanoma. Cancer Immunol Res. 2017;5(6):480–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lopes-Coelho F, Martins F, Pereira SA, Serpa J. Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci. 2021;22(7):3765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Corti C, Giachetti PP, Eggermont AM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: has the time finally come? Eur J Cancer. 2022;160:150–74.

    Article  CAS  PubMed  Google Scholar 

  117. Kim I, Sanchez K, McArthur HL, Page D. Immunotherapy in triple-negative breast cancer: present and future. Curr Breast Cancer Rep. 2019;11:259–71.

    Article  Google Scholar 

  118. Pircher A, Wolf D, Heidenreich A, Hilbe W, Pichler R, Heidegger I. Synergies of targeting tumor angiogenesis and immune checkpoints in non-small cell lung cancer and renal cell cancer: from basic concepts to clinical reality. Int J Mol Sci. 2017;18(11):2291.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Taylor MH, Schmidt EV, Dutcus C, Pinheiro EM, Funahashi Y, Lubiniecki G, Rasco D. The LEAP program: Lenvatinib plus pembrolizumab for the treatment of advanced solid tumors. Future Oncol. 2021;17(6):637–48.

    Article  CAS  PubMed  Google Scholar 

  120. Ghafouri S, Burkenroad A, Pantuck M, Almomani B, Stefanoudakis D, Shen J, Drakaki A. VEGF inhibition in urothelial cancer: the past, present and future. World J Urol. 2021;39:741–9.

    Article  CAS  PubMed  Google Scholar 

  121. Powles T, Walker J, Williams JA, Bellmunt J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat Rev. 2020;82: 101925.

    Article  CAS  PubMed  Google Scholar 

  122. Chang E, Pelosof L, Lemery S, Gong Y, Goldberg KB, Farrell AT, Keegan P, Veeraraghavan J, Wei G, Blumenthal GM. Systematic review of PD-1/PD-L1 inhibitors in oncology: from personalized medicine to public health. Oncologist. 2021;26(10):e1786–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  124. Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB, Kirkwood JM, Krishnan S, Bhore R, Horak C. Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study. J Clin Oncol. 2018;36(4):391.

    Article  CAS  PubMed  Google Scholar 

  125. T Powles T, Plimack ER, Stus V, Gafanov RA, Hawkins RE, Nosov D, Pouliot F, Alekseev BY, Soulieres D, Melichar B, Vynnychenko I. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for locally advanced or metastatic renal cell carcinoma (mRCC): phase III KEYNOTE-426 study. Am Soc Clin Oncol 2019.

  126. Gafanov R, Powles T, Bedke J, Stus V, Waddell T, Nosov D, Pouliot F, Soulieres D, Melichar B, Azevedo S. 669P Subsequent therapy following pembrolizumab+ axitinib or sunitinib treatment for advanced renal cell carcinoma (RCC) in the phase III KEYNOTE-426 study. Ann Oncol. 2021;32:S694.

    Article  Google Scholar 

  127. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, Joseph RW, Pal SK, Reeves JA. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24(6):749–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, Stadler WM, Donskov F, Lee J-L. IMmotion151: a randomized phase III study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). Am Soc Clin Oncol. 2018;36:578.

    Article  Google Scholar 

  129. Zhang Q, Jia Q, Zhang J, Zhu B. Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chin Med J. 2022;135(11):1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rocco D, Gravara LD, Gridelli C. The new immunotherapy combinations in the treatment of advanced non-small cell lung cancer: reality and perspectives. Curr Clin Pharmacol. 2020;15(1):11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang G, Liu J, Qi L, Li Y. The evolving role of checkpoint inhibitors in the treatment of urothelial carcinoma. Br J Clin Pharmacol. 2022;89(1):93–113.

    Article  PubMed  Google Scholar 

  132. Naing A, Hajjar J, Gulley JL, Atkins MB, Ciliberto G, Meric-Bernstam F, Hwu P. Strategies for improving the management of immune-related adverse events. J Immunother Cancer (2020) 8(2).

  133. Chan KK, Bass AR. Autoimmune complications of immunotherapy: pathophysiology and management. bmj (2020) 369.

  134. Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, Moniuszko M, Radziwon P, Tucker SC, Honn KV. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021;40(3):949–82.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rahman MM, Behl T, Islam MR, Alam MN, Islam MM, Albarrati A, Albratty M, Meraya AM, Bungau SG. Emerging management approach for the adverse events of immunotherapy of cancer. Molecules. 2022;27(12):3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wood LS, Moldawer NP, Colleen Lewis M. Immune checkpoint inhibitor therapy. Clin J Oncol Nurs. 2019;23(3):271–80.

    PubMed  Google Scholar 

  137. Abdel-Rahman O, Schmidt J, Petrausch U, Giryes A, Mehrabi A, Schöb O, Mannhart M, Oweira H. Treatment-related death in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Clin Oncol. 2017;29(4):218–30.

    Article  CAS  Google Scholar 

  138. Shiravand Y, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O’Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None to declare.

Author information

Authors and Affiliations

Authors

Contributions

BFF, MS, and SMM wrote the paper. FB, AP, AAS, and NM, provided writing assistance and reviewing the final version of the manuscript.

Corresponding authors

Correspondence to Bahareh Farasati Far or Ali Akbar Samadani.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meybodi, S.M., Farasati Far, B., Pourmolaei, A. et al. Immune checkpoint inhibitors promising role in cancer therapy: clinical evidence and immune-related adverse events. Med Oncol 40, 243 (2023). https://doi.org/10.1007/s12032-023-02114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02114-6

Keywords