Skip to main content

Advertisement

Distinct Patterns of Sirtuin Expression During Progression of Alzheimer’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Aging is one of the major risk factors for Alzheimer’s disease (AD). Sirtuins are associated with prolonged life span. To examine whether the expression levels of sirtuins associate with the progression of AD or not, we performed a comparative immunoblotting and immunohistochemical study of SIRT1, 3, and 5 in the entorhinal cortex and hippocampal subregions and white matter in 45 cases grouped according to Braak and Braak stages of neurofibrillary degeneration. In addition, we compared the expression levels with the local load of tau and amyloid-beta deposits, evaluated using morphometry. Our study revealed that (1) the neuronal subcellular redistribution of SIRT1 parallels the decrease in its expression, suggesting stepwise loss of neuroprotection dependent on the neuronal population; (2) in contrast to SIRT1 and 3, expression of SIRT5 increases during the progression of AD; (3) which might be related to its appearance in activated microglial cells. The complex patterns of the expression of sirtuins in relation to tissue damage should be taken into account when searching for therapies interacting with sirtuins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adori, C., Kovács, G. G., Low, P., et al. (2005). The ubiquitin-proteasome system in Creutzfeldt-Jakob and Alzheimer disease: Intracellular redistribution of components correlates with neuronal vulnerability. Neurobiol Dis., 19, 427–435.

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer A., Stelzmann R.A., Schnitzlein H.N., Murtagh F.R. (1995). An English translation of Alzheimer’s 1907 paper, Uber eine eigenartige Erkankung der Hirnrinde. Clin Anat (New York, NY) 8: 429–431.

  • Baur, J. A., Pearson, K. J., Price, N. L., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Boily, G., Seifert, E. L., Bevilacqua, L., et al. (2008). SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One, 3, e1759.

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyden, S. E., & Kunkel, L. M. (2010). High-density genomewide linkage analysis of exceptional human longevity identifies multiple novel loci. PLoS One, 5, e12432.

    Article  PubMed Central  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropatholog, 82, 239–259.

    Article  CAS  Google Scholar 

  • Brenmoehl, J., & Hoeflich, A. (2013). Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. doi:10.1016/j.mito.2013.04.002.

    PubMed  Google Scholar 

  • Cai, D. (2013). Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metabol TEM, 24, 40–47.

    Article  CAS  Google Scholar 

  • Cantó, C., & Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metabol TEM, 20, 325–331.

    Article  Google Scholar 

  • Chen, J., Zhou, Y., Mueller-Steiner, S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem, 280, 40364–40374.

    Article  CAS  PubMed  Google Scholar 

  • Costantini, S., Sharma, A., Raucci, R., et al. (2013). Genealogy of an ancient protein family: The Sirtuins, a family of disordered members. BMC Evol Biol, 13, 60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dai, H., Kustigian, L., Carney, D., et al. (2010). SIRT1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem, 285, 32695–32703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Luca, M., Rose, G., Bonafè, M., et al. (2001). Sex-specific longevity associations defined by Tyrosine Hydroxylase–Insulin–Insulin Growth Factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol, 36, 1663–1671.

    Article  PubMed  Google Scholar 

  • Dimauro, I., Pearson, T., Caporossi, D., & Jackson, M. J. (2012). A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes, 2012(5), 513.

    Article  Google Scholar 

  • Donmez, G., Wang, D., Cohen, D. E., & Guarente, L. (2010). SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell, 142, 320–332.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du, J., Zhou, Y., Su, X., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 334, 806–809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duyckaerts, C., Delatour, B., & Potier, M. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathol, 118, 5–36.

    Article  CAS  PubMed  Google Scholar 

  • Gan, L., & Mucke, L. (2008). Paths of convergence: Sirtuins in aging and neurodegeneration. Neuron, 58, 10–14.

    Article  CAS  PubMed  Google Scholar 

  • Geng, Y.-Q., Li, T–. T., Liu, X.-Y., et al. (2011). SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem, 112, 3755–3761.

    Article  CAS  PubMed  Google Scholar 

  • Glorioso, C., Oh, S., Douillard, G. G., & Sibille, E. (2011). Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis, 41, 279–290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goedert, M., & Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science, 314, 777–781.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. A., Dominy, J. E., Lee, Y., & Puigserver, P. (2013). The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest, 123, 973–979.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han, C., & Someya, S. (2013). Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Exp Gerontol. doi:10.1016/j.exger.2013.02.014.

    Google Scholar 

  • Herskovits, A. Z., & Guarente, L. (2013). Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res, 23, 746–758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hisahara, S., Chiba, S., Matsumoto, H., et al. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA, 105, 15599–15604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Höftberger, R., Fink, S., Aboul-Enein, F., et al. (2010). Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia, 58, 1847–1857.

    Article  PubMed  Google Scholar 

  • Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol, 13, 225–238.

    CAS  PubMed  Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425, 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Imai, S., & Guarente, L. (2010). Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci, 31, 212–220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin, Q., Yan, T., Ge, X., et al. (2007). Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol, 213, 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Julien, C., Tremblay, C., Emond, V., et al. (2009). Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol, 68, 48–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, D., Nguyen, M. D., Dobbin, M. M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J, 26, 3169–3179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Körner, S., Böselt, S., Thau, N., et al. (2013). Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: Neuroprotective or neurotoxic properties of Sirtuins in ALS? Neurodegener Dis, 11, 141–152.

    Article  PubMed  Google Scholar 

  • Koubova, J., & Guarente, L. (2003). How does calorie restriction work? Genes Dev, 17, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Chaterjee, P., Sharma, P. K., et al. (2013). Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease. PLoS One. doi:10.1371/journal.pone.0061560.

    Google Scholar 

  • Li, X., Zhang, S., Blander, G., et al. (2007). SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell, 28, 91–106.

    Article  PubMed  Google Scholar 

  • Luo, J., Nikolaev, A. Y., Imai, S., et al. (2001). Negative control of p53 by Sir2α promotes cell survival under stress. Cell, 107, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, C. J., Shah, Z. H., Allison, S. J., et al. (2010). SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One, 5, e13502.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mahlknecht, U., Ho, A. D., Letzel, S., & Voelter-Mahlknecht, S. (2006). Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res, 112, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, N., Yonashiro, R., Ogata, Y., et al. (2011). Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes cells, 16, 190–202.

    Article  CAS  PubMed  Google Scholar 

  • Michishita, E., Park, J. Y., Burneskis, J. M., et al. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell, 16, 4623–4635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Min, S.-W., Cho, S.-H., Zhou, Y., et al. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 67, 953–966.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mirra, S. S., Heyman, A., McKeel, D., et al. (1991). The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology, 41, 479–486.

    Article  CAS  PubMed  Google Scholar 

  • Misiak, B., Leszek, J., & Kiejna, A. (2012). Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease–the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull, 89, 144–149.

    Article  CAS  PubMed  Google Scholar 

  • Montine, T. J., Phelps, C. H., Beach, T. G., et al. (2012). National institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol, 123, 1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mrak, R., & Griffin, W. (2005). Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging, 26, 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Onyango, P., Celic, I., McCaffery, J. M., et al. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA, 99, 13653–13658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oppenheimer, H., Gabay, O., Meir, H., et al. (2012). 75-kd sirtuin 1 blocks tumor necrosis factor α-mediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum, 64, 718–728.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panza, F., Frisardi, V., Capurso, C., et al. (2010). Metabolic syndrome and cognitive impairment: Current epidemiology and possible underlying mechanisms. J Alzheimer’s Dis, 21, 691–724.

    Google Scholar 

  • Park, J. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell, 50, 919–930.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C., Lu, Z., Xie, Z., et al. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteom, 10(M111), 012658.

    Google Scholar 

  • Perry, V. H., Nicoll, J. A. R., & Holmes, C. (2010). Microglia in neurodegenerative disease. Nat Rev Neurol, 6, 193–201.

    Article  PubMed  Google Scholar 

  • Polito, L., Kehoe, P. G., Forloni, G., & Albani, D. (2010). The molecular genetics of sirtuins: Association with human longevity and age-related diseases. Int J Mol Epidemiol Genetics, 1, 214–225.

    CAS  Google Scholar 

  • Qin, W., Yang, T., Ho, L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem, 281, 21745–21754.

    Article  CAS  PubMed  Google Scholar 

  • Ramadori, G., Lee, C. E., Bookout, A. L., et al. (2008). Brain SIRT1: Anatomical distribution and regulation by energy availability. J Neurosci, 28, 9989–9996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice, C. M., Sun, M., Kemp, K., et al. (2012). Mitochondrial sirtuins–a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci, 35, 1887–1893.

    Article  CAS  PubMed  Google Scholar 

  • Rose, G., Dato, S., Altomare, K., et al. (2003). Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol, 38, 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2004). Predominant expression of Sir2α, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett, 556, 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Schwer, B., North, B. J., Frye, R. A., et al. (2002). The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol, 158, 647–657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugino, T., Maruyama, M., Tanno, M., et al. (2010). Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor-induced neurite outgrowth in PC12 cells. FEBS Lett, 584, 2821–2826.

    Article  CAS  PubMed  Google Scholar 

  • Tanno, M., Sakamoto, J., Miura, T., et al. (2007). Nucleocytoplasmic shuttling of the NAD + -dependent histone deacetylase SIRT1. J Biol Chem, 282, 6823–6832.

    Article  CAS  PubMed  Google Scholar 

  • Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A-deposition in the human brain and its relevance for the development of AD. Neurology, 58, 1791–1800.

    Article  PubMed  Google Scholar 

  • uniprot.com. (2013). NAD-dependent protein deacetylase sirtuin-1 - Homo sapiens (Human). http://www.uniprot.org/uniprot/Q96EB6#PRO_0000415289.

  • Vasiljevic, M., Heisler, F. F., Hausrat, T. J., et al. (2012). Spatio-temporal expression analysis of the calcium-binding protein calumenin in the rodent brain. Neuroscience, 202, 29–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaziri, H., Dessain, S. K., Eaton, E. N., et al. (2001). hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase. Cell, 107, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Wood, J. G., Rogina, B., Lavu, S., et al. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Tan, M., Xie, Z., et al. (2011). Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol, 7, 58–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Irene Leisser, Gerda Ricken, and Eva Dassler for technical assistance and Dr. Thomas Ströbel for technical advice. This study was supported by DEVELAGE, a 7th framework program (FP7/2007-2013) under Grant Agreement No. 278486.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor G. Kovacs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12017_2014_8288_MOESM1_ESM.tif

Suppl.Fig. 1. Specificity control of SIRT1 and 5 antibodies. In comparison with the immunoreactivity of SIRT1 (a) and SIRT5 (c) antibody alone, the incubation with blocking peptide abolished immunolabeling in the tissue (b and d). (TIFF 6959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, M.I., Milenkovic, I., Regelsberger, G. et al. Distinct Patterns of Sirtuin Expression During Progression of Alzheimer’s Disease. Neuromol Med 16, 405–414 (2014). https://doi.org/10.1007/s12017-014-8288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8288-8

Keywords