Skip to main content

Advertisement

Log in

Chemokines and Their Receptors in the Allergic Airway Inflammatory Process

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The development of the allergic airway disease conveys several cell types, such as T-cells, eosinophils, mast cells, and dendritic cells, which act in a special and temporal synchronization. Cellular mobilization and its complex interactions are coordinated by a broad range of bioactive mediators known as chemokines. These molecules are an increasing family of small proteins with common structural motifs and play an important role in the recruitment and cell activation of both leukocytes and resident cells at the allergic inflammatory site via their receptors. Trafficking and recruitment of cell populations with specific chemokines receptors assure the presence of reactive allergen-specific T-cells in the lung, and therefore the establishment of an allergic inflammatory process. Different approaches directed against chemokines receptors have been developed during the last decades with promising therapeutic results in the treatment of asthma. In this review we explore the role of the chemokines and chemokine receptors in allergy and asthma and discuss their potential as targets for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baggiolini M, Dahinden CA (1994) CC chemokines in allergic inflammation. Immunol Today 15:127–133

    Article  PubMed  CAS  Google Scholar 

  2. Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46

    PubMed  CAS  Google Scholar 

  3. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K (1991) Properties of the novel proinflammatory supergene "Intercrine" cytokine family. Annu Rev Immunol 9:617–648

    Article  PubMed  CAS  Google Scholar 

  4. Baggiolini M (1993) Chemotactic and inflammatory cytokines—CXC and CC proteins. Adv Exp Med Biol 351:1–11

    PubMed  CAS  Google Scholar 

  5. Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15:675–705

    Article  PubMed  CAS  Google Scholar 

  6. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    Article  PubMed  CAS  Google Scholar 

  7. Schlondorff D, Nelson PJ, Luckow B, Banas B (1997) Chemokines and renal disease. Kidney Int 51:610–621

    Article  PubMed  CAS  Google Scholar 

  8. Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland NG, Bazan JF, Moore KW, Schall TJ (1994) Lymphotactin: a cytokine that represents a new class of chemokine. Science 266:1395–1399

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy J, Kelner GS, Kleyensteuber S, Schall TJ, Weiss MC, Yssel H, Schneider PV, Cocks BG, Bacon KB, Zlotnik A (1995) Molecular cloning and functional characterization of human lymphotactin. J Immunol 155:203–209

    PubMed  CAS  Google Scholar 

  10. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  PubMed  CAS  Google Scholar 

  11. Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 55:97–179

    Article  PubMed  CAS  Google Scholar 

  12. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633

    Article  PubMed  CAS  Google Scholar 

  13. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  14. Schall TJ, Bacon KB (1994) Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6:865–873

    Article  PubMed  CAS  Google Scholar 

  15. Alam R, York J, Boyars M, Stafford S, Grant JA, Lee J, Forsythe P, Sim T, Ida N (1996) Increased MCP-1, RANTES, and MIP-1alpha in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 153:1398–1404

    PubMed  CAS  Google Scholar 

  16. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf L, Urban JF Jr (2004) Interleukin-4- and Interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev 201:139–155

    Article  PubMed  CAS  Google Scholar 

  17. Medoff BD, Thomas SY, Luster AD (2008) T cell trafficking in allergic asthma: the ins and outs. Annu Rev Immunol 26:205–232

    Article  PubMed  CAS  Google Scholar 

  18. Schwarz MK, Wells TN (2002) New therapeutics that modulate chemokine networks. Nat Rev Drug Discov 1:347–358

    Article  PubMed  CAS  Google Scholar 

  19. Holt PG, Schon-Hegrad MA, Oliver J, Holt BJ, McMenamin PG (1990) A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Immunol 91:155–159

    Article  PubMed  CAS  Google Scholar 

  20. Huh JC, Strickland DH, Jahnsen FL, Turner DJ, Thomas JA, Napoli S, Tobagus I, Stumbles PA, Sly PD, Holt PG (2003) Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC activation occurs in the airway mucosa but not in the lung parenchyma. J Exp Med 198:19–30

    Article  PubMed  CAS  Google Scholar 

  21. van Rijt LS, Lambrecht BN (2005) Dendritic cells in asthma: a function beyond sensitization. Clin Exp Allergy 35:1125–1134

    Article  PubMed  Google Scholar 

  22. Eisenbarth SC, Piggott DA, Bottomly K (2003) The master regulators of allergic inflammation: dendritic cells in Th2 sensitization. Curr Opin Immunol 15:620–626

    Article  PubMed  CAS  Google Scholar 

  23. Eisenbarth SC, Cassel S, Bottomly K (2004) Understanding asthma pathogenesis: linking innate and adaptive immunity. Curr Opin Pediatr 16:659–666

    Article  PubMed  Google Scholar 

  24. Herrick CA, Bottomly K (2003) To respond or not to respond: T cells in allergic asthma. Nat Rev Immunol 3:405–412

    Article  PubMed  CAS  Google Scholar 

  25. Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467

    PubMed  CAS  Google Scholar 

  26. Marathias KP, Preffer FI, Pinto C, Kradin RL (1991) Most human pulmonary infiltrating lymphocytes display the surface immune phenotype and functional responses of sensitized T cells. Am J Respir Cell Mol Biol 5:470–476

    PubMed  CAS  Google Scholar 

  27. Medoff BD, Thomas SY, Banerji A, Wain JC, Zhang H, Lilly CM, Ginns LC, Luster AD (2005) Pathogenic T-cell recruitment into the airway in human disease. Ann N Y Acad Sci 1062:220–241

    Article  PubMed  Google Scholar 

  28. Strickland D, Kees UR, Holt PG (1996) Regulation of T-cell activation in the lung: isolated lung T cells exhibit surface phenotypic characteristics of recent activation including down-modulated T-cell receptors, but are locked into the G0/G1 phase of the cell cycle. Immunology 87:242–249

    Article  PubMed  CAS  Google Scholar 

  29. Upham JW, McMenamin C, Schon-Hegrad MA, Robinson BW, Holt PG (1994) Functional analysis of human bronchial mucosal T cells extracted with interleukin-2. Am J Respir Crit Care Med 149:1608–1613

    PubMed  CAS  Google Scholar 

  30. Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD (2001) Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 193:1087–1096

    Article  PubMed  CAS  Google Scholar 

  31. Chan WL, Pejnovic N, Lee CA, Al Ali NA (2001) Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J Immunol 167:1238–1244

    PubMed  CAS  Google Scholar 

  32. Murray LA, Syed F, Li L, Griswold DE, Das AM (2006) Role of chemokines in severe asthma. Curr Drug Targets 7:579–588

    Article  PubMed  CAS  Google Scholar 

  33. Sallusto F, Mackay CR, Lanzavecchia A (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277:2005–2007

    Article  PubMed  CAS  Google Scholar 

  34. Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani AM, Schwartz LB, Durham SR, Jeffery PK, Kay AB (1991) Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 88:661–674

    Article  PubMed  CAS  Google Scholar 

  35. Humbert M, Corrigan CJ, Kimmitt P, Till SJ, Kay AB, Durham SR (1997) Relationship between IL-4 and IL-5 MRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med 156:704–708

    PubMed  CAS  Google Scholar 

  36. Lloyd CM, Delaney T, Nguyen T, Tian J, Martinez A, Coyle AJ, Gutierrez-Ramos JC (2000) CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J Exp Med 191:265–274

    Article  PubMed  CAS  Google Scholar 

  37. Reibman J, Hsu Y, Chen LC, Bleck B, Gordon T (2003) Airway epithelial cells release MIP-3alpha/CCL20 in response to cytokines and ambient particulate matter. Am J Respir Cell Mol Biol 28:648–654

    Article  PubMed  CAS  Google Scholar 

  38. Montes-Vizuet R, Vega-Miranda A, Valencia-Maqueda E, Negrete-Garcia MC, Velasquez JR, Teran LM (2006) CC chemokine ligand 1 is released into the airways of atopic asthmatics. Eur Respir J 28:59–67

    Article  PubMed  CAS  Google Scholar 

  39. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, Arrigoni G, Fabbri LM, Sinigaglia F (2001) The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107:1357–1364

    Article  PubMed  CAS  Google Scholar 

  40. Kato A, Schleimer RP (2007) Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol 19:711–720

    Article  PubMed  CAS  Google Scholar 

  41. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 91:3652–3656

    Article  PubMed  CAS  Google Scholar 

  42. Mikhak Z, Fleming CM, Medoff BD, Thomas SY, Tager AM, Campanella GS, Luster AD (2006) STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. J Immunol 176:4959–4967

    PubMed  CAS  Google Scholar 

  43. Sauty A, Dziejman M, Taha RA, Iarossi AS, Neote K, Garcia-Zepeda EA, Hamid Q, Luster AD (1999) The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol 162:3549–3558

    PubMed  CAS  Google Scholar 

  44. Komiya A, Nagase H, Yamada H, Sekiya T, Yamaguchi M, Sano Y, Hanai N, Furuya A, Ohta K, Matsushima K, Yoshie O, Yamamoto K, Hirai K (2003) Concerted expression of eotaxin-1, eotaxin-2, and eotaxin-3 in human bronchial epithelial cells. Cell Immunol 225:91–100

    Article  PubMed  CAS  Google Scholar 

  45. Ying S, Meng Q, Zeibecoglou K, Robinson DS, Macfarlane A, Humbert M, Kay AB (1999) Eosinophil chemotactic chemokines (Eotaxin, Eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J Immunol 163:6321–6329

    PubMed  CAS  Google Scholar 

  46. Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S (1998) Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol 114:137–146

    Article  PubMed  CAS  Google Scholar 

  47. Ying S, Robinson DS, Meng Q, Rottman J, Kennedy R, Ringler DJ, Mackay CR, Daugherty BL, Springer MS, Durham SR, Williams TJ, Kay AB (1997) Enhanced expression of eotaxin and CCR3 MRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin MRNA to bronchial epithelial and endothelial cells. Eur J Immunol 27:3507–3516

    Article  PubMed  CAS  Google Scholar 

  48. HogenEsch H (2004) Chemokines in allergic inflammation: human disease and animal models. Curr Med Chem Anti-Inflamm Anti-Allerg Agents 3:351–361

    Article  CAS  Google Scholar 

  49. Cuvelier SL, Patel KD (2001) Shear-dependent eosinophil transmigration on interleukin 4-stimulated endothelial cells: a role for endothelium-associated eotaxin-3. J Exp Med 194:1699–1709

    Article  PubMed  CAS  Google Scholar 

  50. Yuan Q, Campanella GS, Colvin RA, Hamilos DL, Jones KJ, Mathew A, Means TK, Luster AD (2006) Membrane-bound eotaxin-3 mediates eosinophil transepithelial migration in IL-4-stimulated epithelial cells. Eur J Immunol 36:2700–2714

    Article  PubMed  CAS  Google Scholar 

  51. Humbles AA, Lu B, Friend DS, Okinaga S, Lora J, Al Garawi A, Martin TR, Gerard NP, Gerard C (2002) The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci U S A 99:1479–1484

    Article  PubMed  CAS  Google Scholar 

  52. Lukacs NW (2001) Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 1:108–116

    Article  PubMed  CAS  Google Scholar 

  53. Fujisawa T, Kato Y, Nagase H, Atsuta J, Terada A, Iguchi K, Kamiya H, Morita Y, Kitaura M, Kawasaki H, Yoshie O, Hirai K (2000) Chemokines induce eosinophil degranulation through CCR-3. J Allergy Clin Immunol 106:507–513

    Article  PubMed  CAS  Google Scholar 

  54. Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O (1997) The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem 272:15036–15042

    Article  PubMed  CAS  Google Scholar 

  55. Imai T, Chantry D, Raport CJ, Wood CL, Nishimura M, Godiska R, Yoshie O, Gray PW (1998) Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem 273:1764–1768

    Article  PubMed  CAS  Google Scholar 

  56. Sekiya T, Miyamasu M, Imanishi M, Yamada H, Nakajima T, Yamaguchi M, Fujisawa T, Pawankar R, Sano Y, Ohta K, Ishii A, Morita Y, Yamamoto K, Matsushima K, Yoshie O, Hirai K (2000) Inducible expression of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J Immunol 165:2205–2213

    PubMed  CAS  Google Scholar 

  57. Lezcano-Meza D, Negrete-Garcia MC, Dante-Escobedo M, Teran LM (2003) The monocyte-derived chemokine is released in the bronchoalveolar lavage fluid of steady-state asthmatics. Allergy 58:1125–1130

    Article  PubMed  CAS  Google Scholar 

  58. Bochner BS, Hudson SA, Xiao HQ, Liu MC (2003) Release of both CCR4-active and CXCR3-active chemokines during human allergic pulmonary late-phase reactions. J Allergy Clin Immunol 112:930–934

    Article  PubMed  CAS  Google Scholar 

  59. Liu L, Jarjour NN, Busse WW, Kelly EA (2004) Enhanced generation of helper T type 1 and 2 chemokines in allergen-induced asthma. Am J Respir Crit Care Med 169:1118–1124

    Article  PubMed  Google Scholar 

  60. Roos RS, Loetscher M, Legler DF, Clark-Lewis I, Baggiolini M, Moser B (1997) Identification of CCR8, the receptor for the human CC chemokine I-309. J Biol Chem 272:17251–17254

    Article  PubMed  CAS  Google Scholar 

  61. Bernardini G, Hedrick J, Sozzani S, Luini W, Spinetti G, Weiss M, Menon S, Zlotnik A, Mantovani A, Santoni A, Napolitano M (1998) Identification of the CC chemokines TARC and macrophage inflammatory protein-1 beta as novel functional ligands for the CCR8 receptor. Eur J Immunol 28:582–588

    Article  PubMed  CAS  Google Scholar 

  62. Howard OM, Dong HF, Shirakawa AK, Oppenheim JJ (2000) LEC induces chemotaxis and adhesion by interacting with CCR1 and CCR8. Blood 96:840–845

    PubMed  CAS  Google Scholar 

  63. Luttichau HR, Stine J, Boesen TP, Johnsen AH, Chantry D, Gerstoft J, Schwartz TW (2000) A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J Exp Med 191:171–180

    Article  PubMed  CAS  Google Scholar 

  64. Kremer L, Carramolino L, Goya I, Zaballos A, Gutierrez J, del Moreno-Ortiz M, Martinez A, Marquez G (2001) The transient expression of C-C chemokine receptor 8 in thymus identifies a thymocyte subset committed to become CD4+ single-positive T cells. J Immunol 166:218–225

    PubMed  CAS  Google Scholar 

  65. Napolitano M, Zingoni A, Bernardini G, Spinetti G, Nista A, Storlazzi CT, Rocchi M, Santoni A (1996) Molecular cloning of TER1, a chemokine receptor-like gene expressed by lymphoid tissues. J Immunol 157:2759–2763

    PubMed  CAS  Google Scholar 

  66. Tiffany HL, Lautens LL, Gao JL, Pease J, Locati M, Combadiere C, Modi W, Bonner TI, Murphy PM (1997) Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. J Exp Med 186:165–170

    Article  PubMed  CAS  Google Scholar 

  67. Bishop B, Lloyd CM (2003) CC chemokine ligand 1 promotes recruitment of eosinophils but not Th2 cells during the development of allergic airways disease. J Immunol 170:4810–4817

    PubMed  CAS  Google Scholar 

  68. Chung CD, Kuo F, Kumer J, Motani AS, Lawrence CE, Henderson WR Jr, Venkataraman C (2003) CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol 170:581–587

    PubMed  CAS  Google Scholar 

  69. Goya I, Villares R, Zaballos A, Gutierrez J, Kremer L, Gonzalo JA, Varona R, Carramolino L, Serrano A, Pallares P, Criado LM, Kolbeck R, Torres M, Coyle AJ, Gutierrez-Ramos JC, Martinez A, Marquez G (2003) Absence of CCR8 does not impair the response to ovalbumin-induced allergic airway disease. J Immunol 170:2138–2146

    PubMed  CAS  Google Scholar 

  70. Menten P, Wuyts A, Van Damme J (2002) Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13:455–481

    Article  PubMed  CAS  Google Scholar 

  71. Holgate ST, Bodey KS, Janezic A, Frew AJ, Kaplan AP, Teran LM (1997) Release of RANTES, MIP-1 alpha, and MCP-1 into asthmatic airways following endobronchial allergen challenge. Am J Respir Crit Care Med 156:1377–1383

    PubMed  CAS  Google Scholar 

  72. Tillie-Leblond I, Hammad H, Desurmont S, Pugin J, Wallaert B, Tonnel AB, Gosset P (2000) CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment. Am J Respir Crit Care Med 162:586–592

    PubMed  CAS  Google Scholar 

  73. Bensch GW, Nelson HS, Borish LC (2002) Evaluation of cytokines in nasal secretions after nasal antigen challenge: lack of influence of antihistamines. Ann Allergy Asthma Immunol 88:457–462

    Article  PubMed  CAS  Google Scholar 

  74. Kramer MF, Ostertag P, Pfrogner E, Rasp G (2001) Nasal IL-16 and MIP-1 alpha in late-phase allergic response. Allergy Asthma Proc 22:127–132

    Article  PubMed  CAS  Google Scholar 

  75. Pease JE (2006) Asthma, allergy and chemokines. Curr Drug Targets 7:3–12

    Article  PubMed  CAS  Google Scholar 

  76. Blease K, Mehrad B, Standiford TJ, Lukacs NW, Kunkel SL, Chensue SW, Lu B, Gerard CJ, Hogaboam CM (2000) Airway remodeling is absent in CCR1−/− mice during chronic fungal allergic airway disease. J Immunol 165:1564–1572

    PubMed  CAS  Google Scholar 

  77. Joubert P, Lajoie-Kadoch S, Welman M, Dragon S, Letuvee S, Tolloczko B, Halayko AJ, Gounni AS, Maghni K, Hamid Q (2008) Expression and regulation of CCR1 by airway smooth muscle cells in asthma. J Immunol 180:1268–1275

    PubMed  CAS  Google Scholar 

  78. Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J, Lukacs NW (1999) Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2−/− mice: the role of mast cells. J Immunol 163:2160–2167

    PubMed  CAS  Google Scholar 

  79. Francis JN, Jacobson MR, Lloyd CM, Sabroe I, Durham SR, Till SJ (2004) CXCR1+CD4+ T cells in human allergic disease. J Immunol 172:268–273

    PubMed  CAS  Google Scholar 

  80. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187:129–134

    Article  PubMed  CAS  Google Scholar 

  81. Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97:367–375

    Article  PubMed  CAS  Google Scholar 

  82. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391:344–345

    Article  PubMed  CAS  Google Scholar 

  83. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187:875–883

    Article  PubMed  CAS  Google Scholar 

  84. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009–2021

    Article  PubMed  CAS  Google Scholar 

  85. Farber JM (1990) A macrophage MRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proc Natl Acad Sci U S A 87:5238–5242

    Article  PubMed  CAS  Google Scholar 

  86. Luster AD, Ravetch JV (1987) Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 166:1084–1097

    Article  PubMed  CAS  Google Scholar 

  87. Campbell JJ, Brightling CE, Symon FA, Qin S, Murphy KE, Hodge M, Andrew DP, Wu L, Butcher EC, Wardlaw AJ (2001) Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J Immunol 166:2842–2848

    PubMed  CAS  Google Scholar 

  88. Loetscher P, Pellegrino A, Gong JH, Mattioli I, Loetscher M, Bardi G, Baggiolini M, Clark-Lewis I (2001) The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276:2986–2991

    Article  PubMed  CAS  Google Scholar 

  89. Xanthou G, Duchesnes CE, Williams TJ, Pease JE (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33:2241–2250

    Article  PubMed  CAS  Google Scholar 

  90. Campbell JD, Gangur V, Simons FE, HayGlass KT (2004) Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop. FASEB J 18:329–331

    PubMed  CAS  Google Scholar 

  91. Fulkerson PC, Zimmermann N, Brandt EB, Muntel EE, Doepker MP, Kavanaugh JL, Mishra A, Witte DP, Zhang H, Farber JM, Yang M, Foster PS, Rothenberg ME (2004) Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). Proc Natl Acad Sci U S A 101:1987–1992

    Article  PubMed  CAS  Google Scholar 

  92. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768:952–963

    Article  PubMed  CAS  Google Scholar 

  93. Gleichmann M, Gillen C, Czardybon M, Bosse F, Greiner-Petter R, Auer J, Muller HW (2000) Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci 12:1857–1866

    Article  PubMed  CAS  Google Scholar 

  94. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, Overall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 276:43503–43508

    Article  PubMed  CAS  Google Scholar 

  95. Atluri P, Woo YJ (2008) Pro-angiogenic cytokines as cardiovascular therapeutics: assessing the potential. BioDrugs 22:209–222

    Article  PubMed  CAS  Google Scholar 

  96. Chen M, Xie HQ, Deng L, Li XQ, Wang Y, Zhi W, Yang ZM (2008) Stromal cell-derived factor-1 promotes bone marrow-derived cells differentiation to cardiomyocyte phenotypes in vitro. Cell Prolif 41:336–347

    Article  PubMed  CAS  Google Scholar 

  97. Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, Sacedon R, Varas A, Vicente A (2008) CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett 120:72–78

    Article  PubMed  CAS  Google Scholar 

  98. Schonemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R (2008) Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 510:207–220

    Article  PubMed  CAS  Google Scholar 

  99. Zhang S, Qi L, Li M, Zhang D, Xu S, Wang N, Sun B (2008) Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res 27:62

    Article  PubMed  CAS  Google Scholar 

  100. Gonzalo JA, Lloyd CM, Peled A, Delaney T, Coyle AJ, Gutierrez-Ramos JC (2000) Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1 alpha in the inflammatory component of allergic airway disease. J Immunol 165:499–508

    PubMed  CAS  Google Scholar 

  101. Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ (2002) AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 160:1353–1360

    Article  PubMed  CAS  Google Scholar 

  102. Hoshino M, Aoike N, Takahashi M, Nakamura Y, Nakagawa T (2003) Increased immunoreactivity of stromal cell-derived factor-1 and angiogenesis in asthma. Eur Respir J 21:804–809

    Article  PubMed  CAS  Google Scholar 

  103. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    Article  PubMed  CAS  Google Scholar 

  104. Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT (1998) A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391:799–803

    Article  PubMed  CAS  Google Scholar 

  105. Kanemitsu N, Ebisuno Y, Tanaka T, Otani K, Hayasaka H, Kaisho T, Akira S, Katagiri K, Kinashi T, Fujita N, Tsuruo T, Miyasaka M (2005) CXCL13 is an arrest chemokine for B cells in high endothelial venules. Blood 106:2613–2618

    Article  PubMed  CAS  Google Scholar 

  106. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Forster R, Cyster JG (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-Cell position. Nature 416:94–99

    Article  PubMed  Google Scholar 

  107. Hardy RR (2006) B-1 B cell development. J Immunol 177:2749–2754

    PubMed  CAS  Google Scholar 

  108. Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76

    Article  PubMed  CAS  Google Scholar 

  109. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  PubMed  CAS  Google Scholar 

  110. Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Kusser K, Randall TD (2007) Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci U S A 104:10577–10582

    Article  PubMed  CAS  Google Scholar 

  111. Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME (2004) Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. J Immunol 173:7565–7574

    PubMed  CAS  Google Scholar 

  112. Barnes PJ (1999) Therapeutic strategies for allergic diseases. Nature 402:B31–B38

    Article  PubMed  CAS  Google Scholar 

  113. Barnes PJ (2000) New directions in allergic diseases: mechanism-based anti-inflammatory therapies. J Allergy Clin Immunol 106:5–16

    Article  PubMed  CAS  Google Scholar 

  114. Onuffer JJ, Horuk R (2002) Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci 23:459–467

    Article  PubMed  CAS  Google Scholar 

  115. Baribaud F, Edwards TG, Sharron M, Brelot A, Heveker N, Price K, Mortari F, Alizon M, Tsang M, Doms RW (2001) Antigenically distinct conformations of CXCR4. J Virol 75:8957–8967

    Article  PubMed  CAS  Google Scholar 

  116. Blanpain C, Vanderwinden JM, Cihak J, Wittamer V, Le Poul E, Issafras H, Stangassinger M, Vassart G, Marullo S, Schlndorff D, Parmentier M, Mack M (2002) Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies. Mol Biol Cell 13:723–737

    Article  PubMed  CAS  Google Scholar 

  117. Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P, Berg E, Liu G, Guy HR, Durell SR, Parmentier M, Chang CN, Price K, Tsang M, Doms RW (1999) Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 274:9617–9626

    Article  PubMed  CAS  Google Scholar 

  118. Gutierrez-Ramos JC, Lloyd C, Gonzalo JA (1999) Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions. Immunol Today 20:500–504

    Article  PubMed  CAS  Google Scholar 

  119. Gonzalo JA, Lloyd CM, Kremer L, Finger E, Martinez A, Siegelman MH, Cybulsky M, Gutierrez-Ramos JC (1996) Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J Clin Invest 98:2332–2345

    Article  PubMed  CAS  Google Scholar 

  120. Sabroe I, Peck MJ, Van Keulen BJ, Jorritsma A, Simmons G, Clapham PR, Williams TJ, Pease JE (2000) A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem 275:25985–25992

    Article  PubMed  CAS  Google Scholar 

  121. White JR, Lee JM, Dede K, Imburgia CS, Jurewicz AJ, Chan G, Fornwald JA, Dhanak D, Christmann LT, Darcy MG, Widdowson KL, Foley JJ, Schmidt DB, Sarau HM (2000) Identification of potent, selective non-peptide CC chemokine receptor-3 antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic protein-4-induced eosinophil migration. J Biol Chem 275:36626–36631

    Article  PubMed  CAS  Google Scholar 

  122. Elsner J, Petering H, Hochstetter R, Kimmig D, Wells TN, Kapp A, Proudfoot AE (1997) The CC chemokine antagonist met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 27:2892–2898

    Article  PubMed  CAS  Google Scholar 

  123. Morokata T, Suzuki K, Masunaga Y, Taguchi K, Morihira K, Sato I, Fujii M, Takizawa S, Torii Y, Yamamoto N, Kaneko M, Yamada T, Takahashi K, Shimizu Y (2006) A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 317:244–250

    Article  PubMed  CAS  Google Scholar 

  124. Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y (2006) In vitro and in vivo characterization of a novel CCR3 antagonist, YM-344031. Biochem Biophys Res Commun 339:1217–1223

    Article  PubMed  CAS  Google Scholar 

  125. Warrior U, McKeegan EM, Rottinghaus SM, Garcia L, Traphagen L, Grayson G, Komater V, McNally T, Helfrich R, Harris RR, Bell RL, Burns DJ (2003) Identification and characterization of novel antagonists of the CCR3 receptor. J Biomol Screen 8:324–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Biomedicine in the Post-genomic Era A.C. The style review of the manuscript by Ms. Maggie Brunner, Coordinación de Investigación en Salud, IMSS, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Raymundo Velazquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velazquez, J.R., Teran, L.M. Chemokines and Their Receptors in the Allergic Airway Inflammatory Process. Clinic Rev Allerg Immunol 41, 76–88 (2011). https://doi.org/10.1007/s12016-010-8202-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-010-8202-6

Keywords

Navigation