Skip to main content

Advertisement

Linking KSHV to human cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), has been linked to several malignancies in humans. KSHV is the etiologic agent associated with the development of Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD). KSHV is a double-stranded DNA virus that has been classified as a gammaherpesvirus. Here, we review the association of KSHV with human cancer, viral genes that may potentially be involved in the neoplastic process, and current therapies used to treat KS, PEL, and MCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaposi M: Idiopatisches multiples Pigmentsarkom der Haut. Arch Dermatol Syphillis 1872, 4:265–273.

    Article  Google Scholar 

  2. Chang Y, Cesarman E, Pessin MS, et al.: Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994, 266:1865–1869. Paper identifying the presence of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Kaposi’s sarcoma lesions.

    Article  PubMed  CAS  Google Scholar 

  3. Martin JN, Ganem DE, Osmond DH, et al.: Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med 1998, 338:948–954.

    Article  PubMed  CAS  Google Scholar 

  4. Friedman-Kien AE: Disseminated Kaposi’s sarcoma syndrome in young homosexual men. J Am Acad Dermatol 1981, 5:468–471.

    Article  PubMed  CAS  Google Scholar 

  5. Civati G, Busnach G, Brando B, et al.: Occurrence of Kaposi’s sarcoma in renal transplant recipients treated with low doses of cyclosporine. Transplant Proc 1988, 20:924–928.

    PubMed  CAS  Google Scholar 

  6. Antman K, Chang Y: Kaposi’s sarcoma. N Engl J Med 2000, 342:1027–1038.

    Article  PubMed  CAS  Google Scholar 

  7. Dupin N, Grandadam M, Calvez V, et al.: Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi’s sarcoma. Lancet 1995, 345:761–762.

    Article  PubMed  CAS  Google Scholar 

  8. Hong YK, Foreman K, Shin JW, et al.: Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcomaassociated herpesvirus. Nat Genet 2004, 36:683–685.

    Article  PubMed  CAS  Google Scholar 

  9. Kaaya SF, Leshabari MT, Mbwambo JK: Risk behaviors and vulnerability to HIV infection among Tanzanian youth. J Health Popul Dev Ctries 1998, 1:51–60.

    PubMed  CAS  Google Scholar 

  10. Rabkin CS, Janz S, Lash A, et al.: Monoclonal origin of multicentric Kaposi’s sarcoma lesions. N Engl J Med 1997, 336:988–993.

    Article  PubMed  CAS  Google Scholar 

  11. Harwood AR, Osoba D, Hofstader SL, et al.: Kaposi’s sarcoma in recipients of renal transplants. Am J Med 1979, 67:759–765.

    Article  PubMed  CAS  Google Scholar 

  12. De Rosa G, Barra E, Guarino M, et al.: Multicentric Castleman’s disease in association with Kaposi’s sarcoma. Appl Pathol 1989, 7:105–110.

    PubMed  Google Scholar 

  13. Farge D, Lebbe C, Marjanovic Z, et al.: Human herpes virus-8 and other risk factors for Kaposi’s sarcoma in kidney transplant recipients. Groupe Cooperatif de Transplantation d’ Ile de France (GCIF). Transplantation 1999, 67:1236–1242.

    Article  PubMed  CAS  Google Scholar 

  14. Barozzi P, Luppi M, Facchetti F, et al.: Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 2003, 9:554–561.

    Article  PubMed  CAS  Google Scholar 

  15. Cesarman E, Chang Y, Moore PS, et al.: Kaposi’s sarcomaassociated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995, 332:1186–1191. First paper identifying the link between KSHV and primary effusion lymphomas (also called body cavity-based lymphomas).

    Article  PubMed  CAS  Google Scholar 

  16. Soulier J, Grollet L, Oksenhendler E, et al.: Kaposi’s sarcomaassociated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 1995, 86:1276–1280. First paper identifying the link between KSHV and multicentric Castleman’s disease.

    PubMed  CAS  Google Scholar 

  17. Parravicini C, Chandran B, Corbellino M, et al.: Differential viral protein expression in Kaposi’s sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 2000, 156:743–749.

    PubMed  CAS  Google Scholar 

  18. Du MQ, Liu H, Diss TC, et al.: Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood 2001, 97:2130–2136.

    Article  PubMed  CAS  Google Scholar 

  19. Ablashi DV, Chatlynne LG, Whitman JE, Jr, et al.: Spectrum of Kaposi’s sarcoma-associated herpesvirus, or human herpesvirus 8 diseases. Clin Microbiol Rev 2002, 15:439–464.

    Article  PubMed  Google Scholar 

  20. Nador RG, Cesarman E, Chadburn A, et al.: Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 1996, 88:645–656.

    PubMed  CAS  Google Scholar 

  21. Du MQ, Diss TC, Liu H, et al.: KSHV- and EBV-associated germinotropic lymphoproliferative disorder. Blood 2002, 100:3415–3418.

    Article  PubMed  CAS  Google Scholar 

  22. Deloose ST, Smit LA, Pals FT, et al.: High incidence of Kaposi sarcoma-associated herpesvirus infection in HIV-related solid immunoblastic/plasmablastic diffuse large B-cell lymphoma. Leukemia 2005, 19:851–855.

    Article  PubMed  CAS  Google Scholar 

  23. Carbone A, Gloghini A, Vaccher E, et al.: Kaposi’s sarcomaassociated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn 2005, 7:17–27.

    PubMed  CAS  Google Scholar 

  24. Cool CD, Rai PR, Yeager ME, et al.: Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med 2003, 349:1113–1122.

    Article  PubMed  CAS  Google Scholar 

  25. Katano H, Ito K, Shibuya, K, et al.: Lack of human herpesvirus 8 infection in lungs of Japanese patients with primary pulmonary hypertension. J Infect Dis 2005, 191:743–745.

    Article  PubMed  Google Scholar 

  26. Kedes DH, Operskalski E, Busch M, et al.: The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med 1996, 2:918–924.

    Article  PubMed  CAS  Google Scholar 

  27. Whitby D, Luppi M, Barozzi P, et al.: Human herpesvirus 8 seroprevalence in blood donors and lymphoma patients from different regions of Italy. J Natl Cancer Inst 1998, 90:395–397.

    Article  PubMed  CAS  Google Scholar 

  28. Damania B: Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2004, 2:656–668.

    Article  PubMed  CAS  Google Scholar 

  29. Russo JJ, Bohenzky RA, Chien MC, et al.: Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996, 93:14862–14867. Sequence of the entire KSHV genome.

    Article  PubMed  CAS  Google Scholar 

  30. Fakhari FD, Dittner DP: Charting latency transcripts in Kaposi’s sarcoma-associated herpesvirus by whole-genome real-time quantitative reverse transcription-PCR. J Virol 2002, 76:6213–6223.

    Article  PubMed  CAS  Google Scholar 

  31. Dittmer DP: Transcription profile of Kaposi’s sarcomaassociated herpesvirus in primary Kaposi’s sarcoma lesions as determined by real-time PCR arrays. Cancer Res 2003, 63:2010–5.

    PubMed  CAS  Google Scholar 

  32. Jenner RG, Alba MM, Boshoff C, et al.: Kaposi’s sarcomaassociated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 2001, 75:891–902.

    Article  PubMed  CAS  Google Scholar 

  33. Lee H, Veazey R, Williams K, et al.: Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nat Med 1998, 4:435–440.

    Article  PubMed  CAS  Google Scholar 

  34. Lagunoff M, Majeti R, Weiss A, et al.: Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 1999, 96:5704–5709.

    Article  PubMed  CAS  Google Scholar 

  35. Lee H, Guo J, Li M, et al.: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus. Mol Cell Biol 1998, 18:5219–5228.

    PubMed  CAS  Google Scholar 

  36. Tomlinson CC, Damania B: The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol 2004, 78:1918–1927.

    Article  PubMed  CAS  Google Scholar 

  37. Wang L, Wakisaka N, Tomlinson CC, et al.: The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 2004, 15:2774–2781.

    Article  Google Scholar 

  38. Prakash O, Tang ZY, Peng X, et al.: Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 k1 gene. J Natl Cancer Inst 2002, 94:926–935.

    PubMed  CAS  Google Scholar 

  39. Samaniego F, Pati S, Karp J, et al.: Human herpesvirus 8 k1-associated nuclear factor-kappa b-dependent promoter activity: role in Kaposi’s sarcoma inflammation? J Natl Cancer Inst Monogr 2001, 28:15–23.

    PubMed  Google Scholar 

  40. Bowser BS, DeWire SM, Damania B: Transcriptional regulation of the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. J Virol 2002, 76:12574–12583.

    Article  PubMed  CAS  Google Scholar 

  41. Lee BS, Connole M, Tang Z, et al.: Structural analysis of the Kaposi’s sarcoma-associated herpesvirus K1 protein. J Virol 2003, 77:8072–8086.

    Article  PubMed  CAS  Google Scholar 

  42. Cesarman E, Nador RG, Bai F, et al.: Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol 1996, 70:8218–8223.

    PubMed  CAS  Google Scholar 

  43. Chiou CJ, Poole LJ, Kim PS, et al.: Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcomaassociated herpesvirus. J Virol 2002, 76:3421–3439.

    Article  PubMed  CAS  Google Scholar 

  44. Arvanitakis L, Geras-Raaka E, Varma A, et al.: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 1997, 385:347–350.

    Article  PubMed  CAS  Google Scholar 

  45. Gershengorn MC, Geras-Raaka E, Varma A, et al.: Chemokines activate Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest 1998, 102:1469–1472.

    Article  PubMed  CAS  Google Scholar 

  46. Geras-Raaka E, Varma A, Clark-Lewis I, et al.: Kaposi’s sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1alpha inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Commun 1998, 253:725–727.

    Article  PubMed  CAS  Google Scholar 

  47. Moore PS, Chang Y: Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 2003, 57:609–639.

    Article  PubMed  CAS  Google Scholar 

  48. Bais C, Santomasso B, Coso O, et al.: G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 1998, 391:86–89.

    Article  PubMed  CAS  Google Scholar 

  49. Bais C, Van Geelen A, Eroles P, et al.: Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell 2003, 3:131–143.

    Article  PubMed  CAS  Google Scholar 

  50. Montaner S, Sodhi A, Molinolo A, et al.: Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003, 3:23–36.

    Article  PubMed  CAS  Google Scholar 

  51. Sodhi A, Montaner S, Patel V, et al.: The Kaposi’s sarcomaassociated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 2000, 60:4873–4880.

    PubMed  CAS  Google Scholar 

  52. Yang TY, Chen SC, Leach MW, et al.: Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000, 191:445–454.

    Article  PubMed  CAS  Google Scholar 

  53. Sadler R, Wu L, Forghani B, et al.: A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 1999, 73:5722–5730.

    PubMed  CAS  Google Scholar 

  54. Muralidhar S, Pumfery AM, Hassani M, et al.: Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 1998, 72:4980–4988.

    PubMed  CAS  Google Scholar 

  55. Kliche S, Nagel W, Kremmer E, et al.: Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 2001, 7:833–843.

    Article  PubMed  CAS  Google Scholar 

  56. McCormick C, Ganem D: The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 2005, 307:739–741.

    Article  PubMed  CAS  Google Scholar 

  57. Staskus KA, Sun R, Miller G, et al.: Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 1999, 73:4181–4187.

    PubMed  CAS  Google Scholar 

  58. Dittmer D, Lagunoff M, Renne R, et al.: A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 1998, 72:8309–8315.

    PubMed  CAS  Google Scholar 

  59. Ballestas ME, Chatis PA, Kaye KM: Efficient persistence of extrachromosomal KSHV DNA mediated by latencyassociated nuclear antigen. Science 1999, 284:641–644.

    Article  PubMed  CAS  Google Scholar 

  60. Cotter MA II, Subramanian C, Robertson ES: The Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 2001, 291:241–259.

    Article  PubMed  CAS  Google Scholar 

  61. Garber AC, Hu J, Renne R: LANA cooperatively binds to two sites within the terminal repeat, both sites contribute to lana’s ability to suppress transcription and facilitate DNA replication. J Biol Chem 2002, 277:27401–27411.

    Article  PubMed  CAS  Google Scholar 

  62. Friborg J Jr, Kong W, Hottiger MO, et al.: p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 1999, 402:889–894.

    PubMed  CAS  Google Scholar 

  63. Radkov SA, Kellam P, Boshoff C: The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 2000, 6:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  64. Watanabe T, Sugaya M, Atkins AM, et al.: Kaposi’s sarcomaassociated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J Virol 2003, 77:6188–196.

    Article  PubMed  CAS  Google Scholar 

  65. Fujimuro M, Hayward SD: The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J Virol 2003, 77:8019–8030.

    Article  PubMed  CAS  Google Scholar 

  66. Moore PS, Boshoff C, Weiss RA, et al.: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996, 274:1739–1744.

    Article  PubMed  CAS  Google Scholar 

  67. Nicholas J, Ruvolo VR, Burns WH, et al.: Kaposi’s sarcomaassociated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 1997, 3:287–292.

    Article  PubMed  CAS  Google Scholar 

  68. Chatterjee M, Osborne J, Bestetti G, et al.: Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 2002, 298:1432–1435.

    Article  PubMed  CAS  Google Scholar 

  69. Molden J, Chang Y, You Y, et al.: A Kaposi’s sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J Biol Chem 1997, 272:19625–19631.

    Article  PubMed  CAS  Google Scholar 

  70. Boshoff C, Endo Y, Collins PD, et al.: Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 1997, 278:290–294.

    Article  PubMed  CAS  Google Scholar 

  71. Sozzani S, Luini W, Bianchi G, et al.: The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 1998, 92:4036–4039.

    PubMed  CAS  Google Scholar 

  72. Stine JT, Wood C, Hill M, et al.: KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 2000, 95:1151–1157.

    PubMed  CAS  Google Scholar 

  73. Weber KS, Grone HJ, Rocken M, et al.: Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol 2001, 31:2458–2466.

    Article  PubMed  CAS  Google Scholar 

  74. Northfelt DW, Dezube BJ, Thommes JA, et al.: Pegylatedliposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 1998, 16:2445–2451.

    PubMed  CAS  Google Scholar 

  75. Noy A, Scadden DT, Lee J, et al.: Angiogenesis inhibitor IM862 is ineffective against AIDS-Kaposi’s sarcoma in a phase III trial, but demonstrates sustained, potent effect of highly active antiretroviral therapy: from the AIDS Malignancy Consortium and IM862 Study Team. J Clin Oncol 2005, 23:990–998.

    Article  PubMed  CAS  Google Scholar 

  76. Koon HB, Bubley GJ, Pantanowitz L, et al.: Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol 2005, 23:982–989.

    Article  PubMed  CAS  Google Scholar 

  77. Stallone G, Schena A, Infante B, et al.: Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 2005, 352:1317–1323.

    Article  PubMed  CAS  Google Scholar 

  78. Clifford GM, Polesel J, Rickenbach M, et al.: Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst 2005, 97:425–432.

    Article  PubMed  Google Scholar 

  79. Cote TR, Biggar RJ, Rosenberg PS, et al.: Non-Hodgkin’s lymphoma among people with AIDS: incidence, presentation and public health burden. AIDS/Cancer Study Group. Int J Cancer 1997, 73:645–650.

    Article  PubMed  CAS  Google Scholar 

  80. Casper C, Nichols WG, Huang ML, et al.: Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood 2004, 103:1632–1634.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, E.L., Damania, B. Linking KSHV to human cancer. Curr Oncol Rep 7, 349–356 (2005). https://doi.org/10.1007/s11912-005-0061-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-005-0061-6

Keywords