Abstract
Purpose of Review
Occupational lung disease, including asthma, is a significant cause of disability worldwide. The dose, exposure frequency, and nature of the causal agent influence the inflammatory pathomechanisms that inform asthma disease phenotype and progression. While surveillance, systems engineering, and exposure mitigation strategies are essential preventative considerations, no targeted medical therapies are currently available to ameliorate lung injury post-exposure and prevent chronic airway disease development.
Recent Findings
This article reviews contemporary understanding of allergic and non-allergic occupational asthma mechanisms. In addition, we discuss the available therapeutic options, patient-specific susceptibility and prevention measures, and recent scientific advances in post-exposure treatment conception.
Summary
The course of occupational lung disease that follows exposure is informed by individual predisposition, immunobiologic response, agent identity, overall environmental risk, and preventative workplace practices. When protective strategies fail, knowledge of underlying disease mechanisms is necessary to inform targeted therapy development to lessen occupational asthma disease severity and occurrence.
Similar content being viewed by others
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Vlahovich KP, Sood A. A 2019 update on occupational lung diseases: a narrative review. Pulm Ther. 2021;7(1):75–87. https://doi.org/10.1007/s41030-020-00143-4.
Glaser MS, Webber MP, Zeig-Owens R, Weakley J, Liu X, Ye F, et al. Estimating the time interval between exposure to the World Trade Center disaster and incident diagnoses of obstructive airway disease. Am J Epidemiol. 2014;180(3):272–9. https://doi.org/10.1093/aje/kwu137.
Niles JK, Webber MP, Cohen HW, Hall CB, Zeig-Owens R, Ye F, et al. The respiratory pyramid: from symptoms to disease in World Trade Center exposed firefighters. Am J Ind Med. 2013;56(8):870–80. https://doi.org/10.1002/ajim.22171.
Guidotti TL, Prezant D, de la Hoz RE, Miller A. The evolving spectrum of pulmonary disease in responders to the World Trade Center tragedy. Am J Ind Med. 2011;54(9):649–60. https://doi.org/10.1002/ajim.20987.
Mazzei MA, Sartorelli P, Bagnacci G, Gentili F, Sisinni AG, Fausto A, et al. Occupational lung diseases: underreported diagnosis in radiological practice. Semin Ultrasound CT MR. 2019;40(1):36–50. https://doi.org/10.1053/j.sult.2018.10.019.
Anderson SE, Long C, Dotson GS. Occupational allergy. Eur Med J (Chelmsf). 2017;2(2):65–71.
Cormier M, Lemiere C. Occupational asthma. Int J Tuberc Lung Dis. 2020;24(1):8–21. https://doi.org/10.5588/ijtld.19.0301.
Raulf M. Occupational respiratory allergy: risk factors, diagnosis, and management. Handb Exp Pharmacol. 2022;268:213–25. https://doi.org/10.1007/164_2021_472.
Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health. 2020;225:113469. https://doi.org/10.1016/j.ijheh.2020.113469.
Vandenplas O, Godet J, Hurdubaea L, Rifflart C, Suojalehto H, Wiszniewska M, et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational asthma? Allergy. 2019;74(2):261–72. https://doi.org/10.1111/all.13542.
Lipinska-Ojrzanowska A, Nowakowska-Swirta E, Wiszniewska M, Walusiak-Skorupa J. Bronchial response to high and low molecular weight occupational inhalant allergens. Allergy Asthma Immunol Res. 2020;12(1):164–70. https://doi.org/10.4168/aair.2020.12.1.164.
Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70. https://doi.org/10.1016/j.jaci.2016.04.010.
Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293–311. https://doi.org/10.1111/all.13851.
Sahiner U, Akdis M, Akdis CA. 1 - Introduction to mechanisms of allergic diseases. In: O’Hehir RE, Holgate ST, Khurana Hershey GK, Sheikh A, editors. Allergy Essentials. 2nd ed. Philadelphia: Elsevier; 2022. p. 1–24.
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, et al. EAACI allergen immunotherapy user’s guide. Pediatr Allergy Immunol. 2020;31(Suppl 25):1–101. https://doi.org/10.1111/pai.13189.
Fulkerson PC, Rothenberg ME. Eosinophil development, disease involvement, and therapeutic suppression. Adv Immunol. 2018;138:1–34. https://doi.org/10.1016/bs.ai.2018.03.001.
Angkasekwinai P, Dong C. IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol. 2021;21(1):37–48. https://doi.org/10.1038/s41577-020-0396-0.
Kabashima K, Irie H. Interleukin-31 as a clinical target for pruritus treatment. Front Med (Lausanne). 2021;8:638325. https://doi.org/10.3389/fmed.2021.638325.
Blomme EE, Provoost S, Bazzan E, Van Eeckhoutte HP, Roffel MP, Pollaris L, et al. Innate lymphoid cells in isocyanate-induced asthma: role of microRNA-155. Eur Respir J. 2020. https://doi.org/10.1183/13993003.01289-2019.
Karta MR, Broide DH, Doherty TA. Insights into group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 2016;16(1):8. https://doi.org/10.1007/s11882-015-0581-6.
Stanbery AG, Shuchi S, von Jakob M, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: not just for allergy and helminth infection. J Allergy Clin Immunol. 2022;150(6):1302–13. https://doi.org/10.1016/j.jaci.2022.07.003.
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. https://doi.org/10.3389/fimmu.2021.586078.
Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF, Takei F. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity. 2016;45(1):198–208. https://doi.org/10.1016/j.immuni.2016.06.017.
Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Precision/personalized medicine in allergic diseases and asthma. Arch Immunol Ther Exp (Warsz). 2018;66(6):431–42. https://doi.org/10.1007/s00005-018-0526-6.
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569. https://doi.org/10.3389/fimmu.2014.00569.
Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400. https://doi.org/10.1016/S0140-6736(17)30879-6.
Lummus ZL, Wisnewski AV, Bernstein DI. Pathogenesis and disease mechanisms of occupational asthma. Immunol Allergy Clin North Am. 2011;31(4):699–716, vi. https://doi.org/10.1016/j.iac.2011.07.008.
Lemiere C, Lavoie G, Doyen V, Vandenplas O. Irritant-induced asthma. J Allergy Clin Immunol Pract. 2022;10(11):2799–806. https://doi.org/10.1016/j.jaip.2022.06.045.
Froidure A, Mouthuy J, Durham SR, Chanez P, Sibille Y, Pilette C. Asthma phenotypes and IgE responses. Eur Respir J. 2016;47(1):304–19. https://doi.org/10.1183/13993003.01824-2014.
Sinyor B, Concepcion Perez L. Pathophysiology of asthma. StatPearls. Treasure Island (FL) 2022.
Liu MC, Hubbard WC, Proud D, Stealey BA, Galli SJ, Kagey-Sobotka A, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis. 1991;144(1):51–8. https://doi.org/10.1164/ajrccm/144.1.51.
Stewart AG, Tomlinson PR, Fernandes DJ, Wilson JW, Harris T. Tumor necrosis factor alpha modulates mitogenic responses of human cultured airway smooth muscle. Am J Respir Cell Mol Biol. 1995;12(1):110–9. https://doi.org/10.1165/ajrcmb.12.1.7529028.
Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706–19. https://doi.org/10.1111/cea.12506.
Zou Y, Song W, Zhou L, Mao Y, Hong W. House dust mite induces Sonic hedgehog signaling that mediates epithelial-mesenchymal transition in human bronchial epithelial cells. Mol Med Rep. 2019;20(5):4674–82. https://doi.org/10.3892/mmr.2019.10707.
• Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Front Med (Lausanne). 2020;7:191. https://doi.org/10.3389/fmed.2020.00191. This is a thorough review describing mechanisms of disease progression associated with asthma exacerbation and allergic exposure. This discusses cutting-edge perspectives to further inform allergic respiratory disease mechanisms.
Evans CM, Kim K, Tuvim MJ, Dickey BF. Mucus hypersecretion in asthma: causes and effects. Curr Opin Pulm Med. 2009;15(1):4–11. https://doi.org/10.1097/MCP.0b013e32831da8d3.
Sumi Y, Foley S, Daigle S, L’Archeveque J, Olivenstein R, Letuve S, et al. Structural changes and airway remodelling in occupational asthma at a mean interval of 14 years after cessation of exposure. Clin Exp Allergy. 2007;37(12):1781–7. https://doi.org/10.1111/j.1365-2222.2007.02828.x.
Frew A, Chan H, Dryden P, Salari H, Lam S, Chan-Yeung M. Immunologic studies of the mechanisms of occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1993;92(3):466–78. https://doi.org/10.1016/0091-6749(93)90126-z.
Perrin B, Cartier A, Ghezzo H, Grammer L, Harris K, Chan H, et al. Reassessment of the temporal patterns of bronchial obstruction after exposure to occupational sensitizing agents. J Allergy Clin Immunol. 1991;87(3):630–9. https://doi.org/10.1016/0091-6749(91)90381-w.
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. https://doi.org/10.1016/j.intimp.2021.107598.
Bernstein DI, Cartier A, Cote J, Malo JL, Boulet LP, Wanner M, et al. Diisocyanate antigen-stimulated monocyte chemoattractant protein-1 synthesis has greater test efficiency than specific antibodies for identification of diisocyanate asthma. Am J Respir Crit Care Med. 2002;166(4):445–50. https://doi.org/10.1164/rccm.2109018.
Maestrelli P, Del Prete GF, De Carli M, D’Elios MM, Saetta M, Di Stefano A, et al. CD8 T-cell clones producing interleukin-5 and interferon-gamma in bronchial mucosa of patients with asthma induced by toluene diisocyanate. Scand J Work Environ Health. 1994;20(5):376–81. https://doi.org/10.5271/sjweh.1383.
Frew A, Chang JH, Chan H, Quirce S, Noertjojo K, Keown P, et al. T-lymphocyte responses to plicatic acid-human serum albumin conjugate in occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1998;101(6 Pt 1):841–7. https://doi.org/10.1016/S0091-6749(98)70313-6.
Shirakawa T, Kusaka Y, Fujimura N, Kato M, Heki S, Morimoto K. Hard metal asthma: cross immunological and respiratory reactivity between cobalt and nickel? Thorax. 1990;45(4):267–71. https://doi.org/10.1136/thx.45.4.267.
Raulf-Heimsoth M, Merget R, Rihs HP, Fohring M, Liebers V, Gellert B, et al. T-cell receptor repertoire expression in workers with occupational asthma due to platinum salt. Eur Respir J. 2000;16(5):871–8. https://doi.org/10.1183/09031936.00.16587100.
Paudyal P, Semple S, Niven R, Tavernier G, Ayres JG. Exposure to dust and endotoxin in textile processing workers. Ann Occup Hyg. 2011;55(4):403–9. https://doi.org/10.1093/annhyg/meq084.
Mitchell DC, Armitage TL, Schenker MB, Bennett DH, Tancredi DJ, Langer CE, et al. Particulate matter, endotoxin, and worker respiratory health on large Californian dairies. J Occup Environ Med. 2015;57(1):79–87. https://doi.org/10.1097/JOM.0000000000000304.
Cyprowski M, Sobala W, Buczynska A, Szadkowska-Stanczyk I. Endotoxin exposure and changes in short-term pulmonary function among sewage workers. Int J Occup Med Environ Health. 2015;28(5):803–11. https://doi.org/10.13075/ijomeh.1896.00460.
Nordgren TM, Bailey KL. Pulmonary health effects of agriculture. Curr Opin Pulm Med. 2016;22(2):144–9. https://doi.org/10.1097/MCP.0000000000000247.
Wunschel J, Poole JA. Occupational agriculture organic dust exposure and its relationship to asthma and airway inflammation in adults. J Asthma. 2016;53(5):471–7. https://doi.org/10.3109/02770903.2015.1116089.
Jumat MI, Hayati F, Rahim SSSA, Saupin S, Awang Lukman K, Jeffree MS, et al. Occupational lung disease: a narrative review of lung conditions from the workplace. Ann Med Surg (Lond). 2021;64:102245. https://doi.org/10.1016/j.amsu.2021.102245.
Puvvula J, Baccaglini L, Johnson A, Du Y, Bell JE, Rautiainen RH. Prevalence and risk factors for pulmonary conditions among farmers and ranchers in the Central United States. J Agromedicine. 2022;27(4):378–90. https://doi.org/10.1080/1059924X.2021.2025180.
Basinas I, Sigsgaard T, Kromhout H, Heederik D, Wouters IM, Schlunssen V. A comprehensive review of levels and determinants of personal exposure to dust and endotoxin in livestock farming. J Expo Sci Environ Epidemiol. 2015;25(2):123–37. https://doi.org/10.1038/jes.2013.83.
Kelly KJ, Poole JA. Pollutants in the workplace: effect on occupational asthma. J Allergy Clin Immunol. 2019;143(6):2014–5. https://doi.org/10.1016/j.jaci.2019.04.013.
Johnson AN, Harkema JR, Nelson AJ, Dickinson JD, Kalil J, Duryee MJ, et al. MyD88 regulates a prolonged adaptation response to environmental dust exposure-induced lung disease. Respir Res. 2020;21(1):97. https://doi.org/10.1186/s12931-020-01362-8.
Dickinson JD, Sweeter JM, Staab EB, Nelson AJ, Bailey KL, Warren KJ, et al. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. Am J Physiol Lung Cell Mol Physiol. 2019;316(2):L334–47. https://doi.org/10.1152/ajplung.00206.2018.
Bauer C, Kielian T, Wyatt TA, Romberger DJ, West WW, Gleason AM, et al. Myeloid differentiation factor 88-dependent signaling is critical for acute organic dust-induced airway inflammation in mice. Am J Respir Cell Mol Biol. 2013;48(6):781–9. https://doi.org/10.1165/rcmb.2012-0479OC.
Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014;370(7):640–9. https://doi.org/10.1056/NEJMra1301758.
Basketter DA, Kruszewski FH, Mathieu S, Kirchner DB, Panepinto A, Fieldsend M, et al. Managing the risk of occupational allergy in the enzyme detergent industry. J Occup Environ Hyg. 2015;12(7):431–7. https://doi.org/10.1080/15459624.2015.1011741.
Dotson GS, Maier A, Siegel PD, Anderson SE, Green BJ, Stefaniak AB, et al. Setting occupational exposure limits for chemical allergens–understanding the challenges. J Occup Environ Hyg. 2015;12(Suppl 1):S82-98. https://doi.org/10.1080/15459624.2015.1072277.
Roberts G, Ollert M, Aalberse R, Austin M, Custovic A, DunnGalvin A, et al. A new framework for the interpretation of IgE sensitization tests. Allergy. 2016;71(11):1540–51. https://doi.org/10.1111/all.12939.
Hofmaier S, Hatzler L, Rohrbach A, Panetta V, Hakimeh D, Bauer CP, et al. “Default” versus “pre-atopic” IgG responses to foodborne and airborne pathogenesis-related group 10 protein molecules in birch-sensitized and nonatopic children. J Allergy Clin Immunol. 2015;135(5):1367-74.e1-8. https://doi.org/10.1016/j.jaci.2014.09.048.
Huang X, Tsilochristou O, Perna S, Hofmaier S, Cappella A, Bauer CP, et al. Evolution of the IgE and IgG repertoire to a comprehensive array of allergen molecules in the first decade of life. Allergy. 2018;73(2):421–30. https://doi.org/10.1111/all.13269.
Holt PG, Strickland D, Bosco A, Belgrave D, Hales B, Simpson A, et al. Distinguishing benign from pathologic TH2 immunity in atopic children. J Allergy Clin Immunol. 2016;137(2):379–87. https://doi.org/10.1016/j.jaci.2015.08.044.
van de Veen W, Akdis M. Role of IgG(4) in IgE-mediated allergic responses. J Allergy Clin Immunol. 2016;138(5):1434–5. https://doi.org/10.1016/j.jaci.2016.07.022.
Sonntag HJ, Filippi S, Pipis S, Custovic A. Blood biomarkers of sensitization and asthma. Front Pediatr. 2019;7:251. https://doi.org/10.3389/fped.2019.00251.
Quirce S, Sastre J. Occupational asthma: clinical phenotypes, biomarkers, and management. Curr Opin Pulm Med. 2019;25(1):59–63. https://doi.org/10.1097/MCP.0000000000000535.
Engel J, van Kampen V, Lotz A, Abramowski J, Gering V, Hagemeyer O, et al. An increase of fractional exhaled nitric oxide after specific inhalation challenge is highly predictive of occupational asthma. Int Arch Occup Environ Health. 2018;91(7):799–809. https://doi.org/10.1007/s00420-018-1325-4.
Broide DH, Paine MM, Firestein GS. Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest. 1992;90(4):1414–24. https://doi.org/10.1172/JCI116008.
Fernandez-Nieto M, Sastre B, Sastre J, Lahoz C, Quirce S, Madero M, et al. Changes in sputum eicosanoids and inflammatory markers after inhalation challenges with occupational agents. Chest. 2009;136(5):1308–15. https://doi.org/10.1378/chest.09-0103.
Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, August A, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137(5):1423–32. https://doi.org/10.1016/j.jaci.2016.01.029.
Weidner J, Bartel S, Kilic A, Zissler UM, Renz H, Schwarze J, et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661–78. https://doi.org/10.1111/all.14646.
• Hao Y, Wang B, Zhao J, Wang P, Zhao Y, Wang X, et al. Identification of gene biomarkers with expression profiles in patients with allergic rhinitis. Allergy Asthma Clin Immunol. 2022;18(1):20. https://doi.org/10.1186/s13223-022-00656-4. This identified gene biomarkers in nasal mucosa and blood associated with allergic rhinitis that could have beneficial application in diagnosing occupational allergy and/or monitoring worker sensitization to occupational allergens.
Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, et al. Nonallergic asthma and its severity: biomarkers for its discrimination in peripheral samples. Front Immunol. 2018;9:1416. https://doi.org/10.3389/fimmu.2018.01416.
Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10–30. https://doi.org/10.1111/j.1600-065X.2011.01029.x.
Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75(8):930–9. https://doi.org/10.1016/j.humimm.2014.06.022.
Taylor AJ. HLA phenotype and exposure in development of occupational asthma. Ann Allergy Asthma Immunol. 2003;90(5 Suppl 2):24–7. https://doi.org/10.1016/s1081-1206(10)61644-4.
Jeal H, Draper A, Jones M, Harris J, Welsh K, Taylor AN, et al. HLA associations with occupational sensitization to rat lipocalin allergens: a model for other animal allergies? J Allergy Clin Immunol. 2003;111(4):795–9. https://doi.org/10.1067/mai.2003.176.
Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur Respir J. 2000;15(5):911–4. https://doi.org/10.1034/j.1399-3003.2000.15e17.x.
Bernstein DI, Lummus ZL, Kesavalu B, Yao J, Kottyan L, Miller D, et al. Genetic variants with gene regulatory effects are associated with diisocyanate-induced asthma. J Allergy Clin Immunol. 2018;142(3):959–69. https://doi.org/10.1016/j.jaci.2018.06.022.
• Laulajainen-Hongisto A, Lyly A, Hanif T, Dhaygude K, Kankainen M, Renkonen R, et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45. https://doi.org/10.1186/s13601-020-00347-6. This is a comprehensive assessment of loci and genes identified in GWAS studies implicated in allergic respiratory disease risk.
Bonnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902–6. https://doi.org/10.1038/ng.2694.
Bonnelykke K, Sparks R, Waage J, Milner JD. Genetics of allergy and allergic sensitization: common variants, rare mutations. Curr Opin Immunol. 2015;36:115–26. https://doi.org/10.1016/j.coi.2015.08.002.
Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015;159(2):122–7. https://doi.org/10.1016/j.clim.2015.05.014.
Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18(4):538–46. https://doi.org/10.1038/nm.2657.
Adami AJ, Bracken SJ. Breathing better through bugs: asthma and the microbiome. Yale J Biol Med. 2016;89(3):309–24.
Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, et al. Microbiome and allergic diseases. Front Immunol. 2018;9:1584. https://doi.org/10.3389/fimmu.2018.01584.
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70. https://doi.org/10.1016/j.cell.2012.01.035.
Lau A, Tarlo SM. Update on the management of occupational asthma and work-exacerbated asthma. Allergy Asthma Immunol Res. 2019;11(2):188–200. https://doi.org/10.4168/aair.2019.11.2.188.
Hossenbaccus L, Linton S, Garvey S, Ellis AK. Towards definitive management of allergic rhinitis: best use of new and established therapies. Allergy Asthma Clin Immunol. 2020;16:39. https://doi.org/10.1186/s13223-020-00436-y.
Erlandson G, Magzamen S, Sharp JL, Mitra S, Jones K, Poole JA, et al. Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers. J Occup Environ Hyg. 2023;20(1):14–22. https://doi.org/10.1080/15459624.2022.2137297.
•• Poole JA, Gaurav R, Schwab A, Nelson AJ, Gleason A, Romberger DJ, et al. Post-endotoxin exposure-induced lung inflammation and resolution consequences beneficially impacted by lung-delivered IL-10 therapy. Sci Rep. 2022;12(1):17338. https://doi.org/10.1038/s41598-022-22346-2. This demonstrated that short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high-dose inhalant LPS exposure.
Wyatt TA, Nemecek M, Chandra D, DeVasure JM, Nelson AJ, Romberger DJ, et al. Organic dust-induced lung injury and repair: bi-directional regulation by TNFalpha and IL-10. J Immunotoxicol. 2020;17(1):153–62. https://doi.org/10.1080/1547691X.2020.1776428.
Garantziotis S, Brass DM, Savov J, Hollingsworth JW, McElvania-TeKippe E, Berman K, et al. Leukocyte-derived IL-10 reduces subepithelial fibrosis associated with chronically inhaled endotoxin. Am J Respir Cell Mol Biol. 2006;35(6):662–7. https://doi.org/10.1165/rcmb.2006-0055OC.
Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol. 2021;148(6):1430–41. https://doi.org/10.1016/j.jaci.2021.10.001.
Malipiero G, Melone G, Puggioni F, Pawankar R, Heffler E, Paoletti G. Allergen immunotherapy and biologics in respiratory allergy: friends or foes? Curr Opin Allergy Clin Immunol. 2021;21(1):16–23. https://doi.org/10.1097/ACI.0000000000000707.
Durham SR, Walker SM, Varga EM, Jacobson MR, O’Brien F, Noble W, et al. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med. 1999;341(7):468–75. https://doi.org/10.1056/NEJM199908123410702.
Globinska A, Boonpiyathad T, Satitsuksanoa P, Kleuskens M, van de Veen W, Sokolowska M, et al. Mechanisms of allergen-specific immunotherapy: diverse mechanisms of immune tolerance to allergens. Ann Allergy Asthma Immunol. 2018;121(3):306–12. https://doi.org/10.1016/j.anai.2018.06.026.
Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485–98. https://doi.org/10.1016/j.jaci.2017.10.010.
Nikolov G, Todordova Y, Emilova R, Hristova D, Nikolova M, Petrunov B. Allergen-specific IgE and IgG4 as biomarkers for immunologic changes during subcutaneous allergen immunotherapy. Antibodies (Basel). 2021. https://doi.org/10.3390/antib10040049.
Stanic B, van de Veen W, Wirz OF, Ruckert B, Morita H, Sollner S, et al. IL-10-overexpressing B cells regulate innate and adaptive immune responses. J Allergy Clin Immunol. 2015;135(3):771-80.e8. https://doi.org/10.1016/j.jaci.2014.07.041.
Lao-Araya M, Steveling E, Scadding GW, Durham SR, Shamji MH. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134(5):1193-5.e4. https://doi.org/10.1016/j.jaci.2014.07.029.
Palomares O, Akdis M, Martin-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev. 2017;278(1):219–36. https://doi.org/10.1111/imr.12555.
Esteban-Gorgojo I, Rial MJ, Sastre J. Infrequent treatments for occupational asthma: immunotherapy and biological therapy. Curr Treat Options Allergy. 2017;4(2):118–28. https://doi.org/10.1007/s40521-017-0125-5.
Armentia A, Martin-Santos JM, Quintero A, Fernandez A, Barber D, Alonso E, et al. Bakers’ asthma: prevalence and evaluation of immunotherapy with a wheat flour extract. Ann Allergy. 1990;65(4):265–72.
Cirla AM, Lorenzini RA, Cirla PE. Specific immunotherapy and relocation in occupational allergic bakers. G Ital Med Lav Ergon. 2007;29(3 Suppl):443–5.
Moscato G, Pala G, Sastre J. Specific immunotherapy and biological treatments for occupational allergy. Curr Opin Allergy Clin Immunol. 2014;14(6):576–81. https://doi.org/10.1097/ACI.0000000000000105.
Leynadier F, Herman D, Vervloet D, Andre C. Specific immunotherapy with a standardized latex extract versus placebo in allergic healthcare workers. J Allergy Clin Immunol. 2000;106(3):585–90. https://doi.org/10.1067/mai.2000.109173.
Sastre J, Fernandez-Nieto M, Rico P, Martin S, Barber D, Cuesta J, et al. Specific immunotherapy with a standardized latex extract in allergic workers: a double-blind, placebo-controlled study. J Allergy Clin Immunol. 2003;111(5):985–94. https://doi.org/10.1067/mai.2003.1390.
Nettis E, Delle Donne P, Di Leo E, Fantini P, Passalacqua G, Bernardini R, et al. Latex immunotherapy: state of the art. Ann Allergy Asthma Immunol. 2012;109(3):160–5. https://doi.org/10.1016/j.anai.2012.07.004.
Wahn U, Siraganian RP. Efficacy and specificity of immunotherapy with laboratory animal allergen extracts. J Allergy Clin Immunol. 1980;65(6):413–21. https://doi.org/10.1016/0091-6749(80)90233-x.
Hansen I, Hormann K, Klimek L. Specific immunotherapy in inhalative allergy to rat epithelium. Laryngorhinootologie. 2004;83(8):512–5. https://doi.org/10.1055/s-2004-814505.
Lavaud F, Bonniaud P, Dalphin JC, Leroyer C, Muller D, Tannous R, et al. Usefulness of omalizumab in ten patients with severe occupational asthma. Allergy. 2013;68(6):813–5. https://doi.org/10.1111/all.12149.
Caruso C, Gencarelli G, Gaeta F, Valluzzi RL, Rumi G, Romano A. Efficacy of omalizumab treatment in a man with occupational asthma and eosinophilic granulomatosis with polyangioitis. Ann Allergy Asthma Immunol. 2018;120(2):209–11. https://doi.org/10.1016/j.anai.2017.10.034.
Olivieri M, Biscardo CA, Turri S, Perbellini L. Omalizumab in persistent severe bakers’ asthma. Allergy. 2008;63(6):790–1. https://doi.org/10.1111/j.1398-9995.2008.01702.x.
Kopp MV, Hamelmann E, Zielen S, Kamin W, Bergmann KC, Sieder C, et al. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy. 2009;39(2):271–9. https://doi.org/10.1111/j.1365-2222.2008.03121.x.
•• Zhang Y, Xi L, Gao Y, Huang Y, Cao F, Xiong W, et al. Omalizumab is effective in the preseasonal treatment of seasonal allergic rhinitis. Clin Transl Allergy. 2022;12(1):e12094. https://doi.org/10.1002/clt2.12094. This showed that prophylactic administration of single-dose omalizumab diminished seasonal allergy symptoms; findings are relevant for other occupational manifestations of allergic respiratory disease.
De Matteis S, Heederik D, Burdorf A, Colosio C, Cullinan P, Henneberger PK, et al. Current and new challenges in occupational lung diseases. Eur Respir Rev. 2017. https://doi.org/10.1183/16000617.0080-2017.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The National Institute for Occupational Safety and Health grant U54OH010162 (JAP, ADS) and R01OH012045 (JAP), Department of Defense #PR200793 (JAP). Central States Center of Agricultural Safety and Health (CS-CASH). JAP has received research reagent from AstraZeneca (no monies) and is a site investigator for clinical studies for Takeda, GlaxoSmithKline, and AstraZeneca (no monies).
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Schwab, A.D., Poole, J.A. Mechanistic and Therapeutic Approaches to Occupational Exposure-Associated Allergic and Non-Allergic Asthmatic Disease. Curr Allergy Asthma Rep 23, 313–324 (2023). https://doi.org/10.1007/s11882-023-01079-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11882-023-01079-w