Skip to main content

Advertisement

Log in

The Cannabinoid Delta-9-tetrahydrocannabinol Mediates Inhibition of Macrophage Chemotaxis to RANTES/CCL5: Linkage to the CB2 Receptor

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The chemotactic response of murine peritoneal macrophages to RANTES/CCL5 was inhibited significantly following pretreatment with delta-9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana. Significant inhibition of this chemokine directed migratory response was obtained also when the full cannabinoid agonist CP55940 was used. The CB2 receptor-selective ligand O-2137 exerted a robust inhibition of chemotaxis while the CB1 receptor-selective ligand ACEA had a minimal effect. The THC-mediated inhibition was reversed by the CB2 receptor-specific antagonist SR144528 but not by the CB1 receptor-specific antagonist SR141716A. In addition, THC treatment had a minimal effect on the chemotactic response of peritoneal macrophages from CB2 knockout mice. Collectively, these results suggest that cannabinoids act through the CB2 receptor to transdeactivate migratory responsiveness to RANTES/CCL5. Furthermore, the results suggest that the CB2 receptor may be a constituent element of a network of G protein-coupled receptor signal transductional systems, inclusive of chemokine receptors, that act coordinately to modulate macrophage migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Bajetto A, Bonavia R, Barbero S, Schettini G (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82:1311–1329

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines CXC and CC chemokines. Adv Immunol 55:97–179

    PubMed  CAS  Google Scholar 

  • Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15:675–705

    Article  PubMed  CAS  Google Scholar 

  • Becker EL (1977) Stimulated neutrophil locomotion: chemokinesis and chemotaxis. Arch Pathol Lab Med 101:509–513

    PubMed  CAS  Google Scholar 

  • Berdyshev EV, Schmid PC, Krebsbach RJ, Hillard CJ, Huang C, Chen N, Dong Z, Schmid HH (2001) Cannabinoid-receptor-independent cell signaling by N-acylethanolamines. Biochem J 360:67–75

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buckley NE, McCoy KL, Mezey E, Bonner T, Zimmer A, Felder CC, Glass M, Zimmer A (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol 396:141–149

    Article  PubMed  CAS  Google Scholar 

  • Cabral GA, Dove Pettit DA (1998) Drugs and immunity: cannabinoids and their role in decreased resistance to infectious disease. J Neuroimmunol 83:116–123

    Article  PubMed  CAS  Google Scholar 

  • Cabral GA, Staab A (2005) Effects on the immune system. In: Pertwee R (ed) Handbook on experimental pharmacology: cannabinoids. Springer, Berlin, pp 385–423

    Google Scholar 

  • Cabral GA, Toney DM, Fischer-Stenger K, Harrison MP, Marciano-Cabral FM (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis-sensitive cells. Life Sci 56:2065–2072

    Article  PubMed  CAS  Google Scholar 

  • Chari-Bitron A (1976) Effect of δ1-tetrahydrocannabinol on red blood cell membranes and alveolar macrophages. In: Nahas GG (ed) Marihuana: Chemistry, biochemistry, and cellular effects. Springer, New York, pp 273–281

    Google Scholar 

  • Charo IF, Ransohoff RM (2006) Mechanisms of disease: The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  PubMed  CAS  Google Scholar 

  • Chuchawankul S, Shima M, Buckley NE, Hartmann CB, McCoy KL (2004) Role of cannabinoid receptors in inhibiting macrophage costimulatory activity. Int Immunopharmacol 4:265–278

    Article  PubMed  CAS  Google Scholar 

  • Daaka Y, Friedman H, Klein TW (1996) Cannabinoid receptor proteins are increased in Jurkat, human T-cell line after mitogen activation. J Pharmacol Exp Ther 276:776–783

    PubMed  CAS  Google Scholar 

  • Drath DB, Shorey JM, Price L, Huber GL (1979) Metabolic and functional characteristics of alveolar macrophages recovered from rats exposed to marijuana smoke. Infect Immun 25:268–272

    PubMed  CAS  Google Scholar 

  • Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29–41

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Veluz JS, Williams HL, Briley EM, Matsuda LA (1992) Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol Pharmacol 42:838–845

    PubMed  CAS  Google Scholar 

  • Friedman M, Cepero ML, Klein T, Friedman H (1986) Suppressive effect of delta 9-tetrahydrocannabinol in vitro on phagocytosis by murine macrophages. Proc Soc Exp Biol Med 182:225–228

    PubMed  CAS  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Gerard NP (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol 12:775–808

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Preet A, Groopman JE, Ganju KG (2006) Cannabinoid receptor CB2 modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Mol Immunol 43:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Goldman DW, Goetzl EJ (1982) Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes. J Immunol 129:1600–1604

    PubMed  CAS  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, Ali H, Richardson R, Snyderman R, Oppenheim JJ (1998) Opiates transactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188:317–325

    Article  PubMed  CAS  Google Scholar 

  • Hanahan DJ (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu Rev Biochem 55:483–509

    Article  PubMed  CAS  Google Scholar 

  • Harris H (1953) Chemotaxis of monocytes. Br J Exp Pathol 34:276–279

    PubMed  CAS  Google Scholar 

  • Harris H (1954) Role of chemotaxis in inflammation. Physiol Rev 34:529–562

    PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Huber GL, Pochay VE, Shea JW, Hinds WC, Weker RR, First MW, Sornberger GC (1978) An experimental animal model for quantifying the biologic effects of marijuana on the defense system of the lung. Adv Biosci 22–23:301–328

    PubMed  Google Scholar 

  • Huber GL, Simmons GA, McCarthy CR, Cutting MB, Laguarda R, Pereira W (1975) Depressant effect of marihuana smoke on antibactericidal activity of pulmonary alveolar macrophages. Chest 68:769–773

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Hereld D (2006) Moving toward understanding eukaryotic chemotaxis. Eur J Cell Biol 85:905–913

    Article  PubMed  CAS  Google Scholar 

  • Jordá MA, Verbakel SE, Valk PJ, Vankan-Berkhoudt YV, Maccarrone M, Finazzi-Agró A, Löwenberg B, Delwel (2002) Hematopoietic cells expression the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99:2786–2793

    Article  PubMed  Google Scholar 

  • Kehrl JH (2006) Chemoattractant receptor signaling and the control of lymphocyte migration. Immunol Res 34:211–227

    Article  PubMed  CAS  Google Scholar 

  • Keller HU, Wissler JH, Hess MW, Cottier H (1978) Distinct chemokinetic and chemotactic responses in neutrophil granulocytes. Eur J Immunol 8:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kim CH (2004) Chemokine chemokine-receptor network in immune cell trafficking. Curr Drug Targets Immune Endocr Metabol Disord 4:343–361

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, Sugiura T (2005) Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biochem 137:217–223

    Article  PubMed  CAS  Google Scholar 

  • Klein TW, Friedman H, Specter S (1998) Marijuana, immunity and infection. J Neuroimmunol 83:102–115

    Article  PubMed  CAS  Google Scholar 

  • Klein TW, Newton CA, Widen R, Friedman H (1985) The effect of delta-9-tetrahydrocannabinol and 11-hydroxy-delta-9-tetrahydrocannabinol on T-lymphocyte and B-lymphocyte mitogen responses. J Immunopharmacol 7:451–466

    Article  PubMed  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  • Le Y, Zhou Y, Iribarren P, Wang J (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1:95–104

    PubMed  CAS  Google Scholar 

  • Lopez-Cepero M, Friedman M, Klein T, Friedman H (1986) Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro. J Leukoc Biol 39:679–686

    PubMed  CAS  Google Scholar 

  • Makriyannis A, Yang DP, Griffin RG, Das Gupta SK (1990) The perturbation of model membranes by (-)–delta 9-tetrahydrocannabinol. Studies using solid-state 2H– and 13C-NMR. Biochim Biophys Acta 1028:31–42

    Article  PubMed  CAS  Google Scholar 

  • Mann PE, Cohen AB, Finley TN, Ladman AJ (1971) Alveolar macrophages. Structural and functional differences between non-smokers and smokers of marijuana and tobacco. Lab Invest 25:111–120

    PubMed  CAS  Google Scholar 

  • Martin BR (1986) Cellular effects of cannabinoids. Pharmacol Rev 38:45–74

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • McCarthy CR, Cutting MB, Simmons GA, Pereira W, Laguarda R, Huber GL (1976) The effect of marihuana on the in vitro function of pulmonary alveolar macrophages. In: Braude MC, Szara S (eds) Pharmacology of marihuana, Vol. 1. Raven, New York, pp 211–216

    Google Scholar 

  • McCoy K, Gainey D, Cabral G (1995) Delta-9-tetrahydrocannabinol modulates antigen processing by macrophages. J Pharmacol Exp Ther 273:1216–1223

    PubMed  CAS  Google Scholar 

  • McCoy KL, Matveyeva M, Carlisle SJ, Cabral GA (1999) Cannabinoid inhibition of the processing of intact lysozyme by macrophages: evidence for CB2 receptor participation. J Pharmacol Exp Ther 289:1620–1625

    PubMed  CAS  Google Scholar 

  • Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84:371–379

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious disease. Blood 95:3032–3043

    PubMed  CAS  Google Scholar 

  • Murphy PM (2002) International Union of Pharmacology. XXX. Update on Chemokine Receptor Nomenclature. Pharmacol Rev 54:227–229

    Article  PubMed  CAS  Google Scholar 

  • Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM (2004) Cannabinoid receptor-independent actions of the aminoalkylindole WIN 55,212-2 on trigeminal sensory neurons. Br J Pharmacol 142:257–266

    Article  PubMed  CAS  Google Scholar 

  • Puffenbarger R, Boothe C, Cabral G (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29:58–69

    Article  PubMed  CAS  Google Scholar 

  • Raz A, Goldman R (1976) Effect of hashish compounds on mouse peritoneal macrophages. Lab Invest 34:69–76

    PubMed  CAS  Google Scholar 

  • Rios CD, Gomes I, Devi LA (2006) Mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  PubMed  CAS  Google Scholar 

  • Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92:71–87

    Article  PubMed  CAS  Google Scholar 

  • Rogers TJ, Steele AD, Howard OMZ, Oppenheim JJ (2000) Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann N Y Acad Sci 917:19–28

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote P, Martucci C, Vaccani A, Bariselli F, Panerai AE, Colombo A, Parolaro D, Massi P (2005) The nonpsychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro J Neuroimmunol 159:97–105

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote P, Massi P, Panerai AE, Parolaro D (2000) In vivo and in vitro treatment with the synthetic cannabinoid CP55, 940 decreases the in vitro migration of macrophages in the rat: involvement of both CB1 and CB2 receptors. J Neuroimmunol 109:155–163

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann E, Corcoran BA, Wahl SM (1975) N-formyl-methionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Specter SC, Klein TW, Newton C, Mondragon M, Widen R, Friedman H (1986) Marijuana effects on immunity: suppression of human natural killer cell activity of delta-9-tetrahydrocannabinol. Int J Immunopharmacol 8:741–745

    Article  PubMed  CAS  Google Scholar 

  • Specter S, Lancz G, Goodfellow D (1991) Suppression of human macrophage function in vitro by delta-9-tetrahydrocannabinol. J Leukocyte Biol 50:423–426

    PubMed  CAS  Google Scholar 

  • Stefano GB, Salzet M, Rialas CM, Mattocks D, Fimiani C, Bilfinger TV (1998) Macrophage behavior associated with acute and chronic exposure to HIV GP120, morphine and anandamide: endothelial implications. Int J Cardiol 64(Suppl 1):S3–S13

    Article  PubMed  Google Scholar 

  • Suzuki S, Chuang L, Yau P, Doi R, Chuang R (2002) Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280:192–200

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Rogers TJ (2001) Crosstalk between chemokine and opioid receptors results in downmodulation of cell migration. Adv Exp Med Biol 493:75–79

    PubMed  CAS  Google Scholar 

  • Szabo I, Wetzel M, McCarthy L, Steele A, Henderson E, Howard OMZ, Oppenheim JJ, Rogers TJ (2001) Interactions of opioid receptors, chemokines and chemokine receptors. Adv Exp Med Biol 493:69–74

    PubMed  CAS  Google Scholar 

  • Szabo I, Chen XH, Xin L, Adler MW, Howard OMZ, Oppenheim JJ, Rogers TJ (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci U S A 99:10276–10281

    Article  PubMed  CAS  Google Scholar 

  • Tang JL, Lancz G, Specter S, Bullock H (1992) Marijuana and immunity: tetrahydrocannabinol-mediated inhibition of growth and phagocyte activity of the murine macrophage cell line, P388D1. Int J Immunopharmacol 14:253–262

    Article  PubMed  CAS  Google Scholar 

  • Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 288:1357–1366

    PubMed  CAS  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405

    PubMed  CAS  Google Scholar 

  • Watzl B, Scuderi P, Watson RR (1991) Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppresses interleukin-1 alpha in vitro. Int J Immunopharmacol 13:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Hodge D, Rogers TJ, Oppenheim JJ (2003) Ca2+-independent protein kinase Cs mediate heterologous desensitization of leukocyte chemokine receptors by opioid receptors. J Biol Chem 278:12729–12736

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZM, Specter S, Friedman H (1992) Inhibition by delta-9-tetrahydrocannabinol of tumor necrosis factor alpha production by mouse and human macrophages. Int J Immunopharmacol 14:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman S, Zimmerman AM, Cameron IL, Laurence HL (1977) Delta1-tetrahydrocannabinol, cannabidiol and cannabinol effects on the immune response of mice. Pharmacology 15:10–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ms. Christina L. Hartman for excellent technical assistance. These studies were supported through NIH Awards DA015608, DA05832, DA05274 and T32 DA07027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Cabral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raborn, E.S., Marciano-Cabral, F., Buckley, N.E. et al. The Cannabinoid Delta-9-tetrahydrocannabinol Mediates Inhibition of Macrophage Chemotaxis to RANTES/CCL5: Linkage to the CB2 Receptor. J Neuroimmune Pharmacol 3, 117–129 (2008). https://doi.org/10.1007/s11481-007-9077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-007-9077-z

Keywords

Navigation