Skip to main content
Log in

Identification of two migratory colon ILC2 populations differentially expressing IL-17A and IL-5/IL-13

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Group 2 innate lymphoid cells (ILC2s) play important tissue resident roles in anti-parasite immunity, allergic immune response, tissue homeostasis, and tumor immunity. ILC2s are considered tissue resident cells with little proliferation at steady state. Recent studies have shown that a subset of small intestinal ILC2s could leave their residing tissues, circulate and migrate to different organs, including lung, liver, mesenteric LN and spleen, upon activation. However, it remains unknown whether other ILC populations with migratory behavior exist. In this study, we find two major colon ILC2 populations with potential to migrate to the lung in response to IL-25 stimulation. One subset expresses IL-17A and resembles inflammatory ILC2s (iILC2s) but lacks CD27 expression, whereas the other expresses CD27 but not IL-17A. In addition, the IL-17A+ ILC2s express lower levels of CD127, CD25, and ST2 than CD27+ ILC2s, which express higher levels of IL-5 and IL-13. Surprisingly, we found that both colon ILC2 populations still maintained their colonic features of preferential expression of IL-17A and CD27, IL-5/IL-13, respectively. Together, our study identifies two migratory colon ILC2 subsets with unique surface markers and cytokine profiles which are critical in regulating lung and colon immunity and homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artis, D., and Spits, H. (2015). The biology of innate lymphoid cells. Nature 517, 293–301.

    Article  CAS  Google Scholar 

  • Barlow, J.L., Peel, S., Fox, J., Panova, V., Hardman, C.S., Camelo, A., Bucks, C., Wu, X., Kane, C.M., Neill, D.R., et al. (2013). IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J Allergy Clin Immunol 132, 933–941.

    Article  CAS  Google Scholar 

  • Buonocore, S., Ahern, P.P., Uhlig, H.H., Ivanov, Littman, D.R., Maloy, K.J., and Powrie, F. (2010). Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375.

    Article  CAS  Google Scholar 

  • Cai, T., Qiu, J., Ji, Y., Li, W., Ding, Z., Suo, C., Chang, J., Wang, J., He, R., Qian, Y., et al. (2019). IL-17-producing ST2+ group 2 innate lymphoid cells play a pathogenic role in lung inflammation. J Allergy Clin Immunol 143, 229–244.e9.

    Article  CAS  Google Scholar 

  • Dominguez, C.X., Amezquita, R.A., Guan, T., Marshall, H.D., Joshi, N.S., Kleinstein, S.H., and Kaech, S.M. (2015). The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med 212, 2041–2056.

    Article  CAS  Google Scholar 

  • Esplugues, E., Huber, S., Gagliani, N., Hauser, A.E., Town, T., Wan, Y.Y., O’Connor, W., Rongvaux, A., Van Rooijen, N., Haberman, A.M., et al. (2011). Control of TH17 cells occurs in the small intestine. Nature 475, 514–518.

    Article  CAS  Google Scholar 

  • Flamar, A.L., Klose, C.S.N., Moeller, J.B., Mahlakõiv, T., Bessman, N.J., Zhang, W., Moriyama, S., Stokic-Trtica, V., Rankin, L.C., Putzel, G.G., et al. (2020). Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity 52, 606–619.e6.

    Article  CAS  Google Scholar 

  • Fuchs, A., Vermi, W., Lee, J.S., Lonardi, S., Gilfillan, S., Newberry, R.D., Cella, M., and Colonna, M. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781.

    Article  CAS  Google Scholar 

  • Gasteiger, G., Fan, X., Dikiy, S., Lee, S.Y., and Rudensky, A.Y. (2015). Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985.

    Article  CAS  Google Scholar 

  • Germain, R.N., and Huang, Y. (2019). ILC2s—resident lymphocytes pre-adapted to a specific tissue or migratory effectors that adapt to where they move? Curr Opin Immunol 56, 76–81.

    Article  CAS  Google Scholar 

  • Grigg, J.B., Shanmugavadivu, A., Regen, T., Parkhurst, C.N., Ahmed, A., Joseph, A.M., Mazzucco, M., Gronke, K., Diefenbach, A., Eberl, G., et al. (2021). Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712.

    Article  CAS  Google Scholar 

  • Hoyler, T., Klose, C.S.N., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E.L., Voehringer, D., Busslinger, M., and Diefenbach, A. (2012). The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648.

    Article  CAS  Google Scholar 

  • Huang, Y., Guo, L., Qiu, J., Chen, X., Hu-Li, J., Siebenlist, U., Williamson, P.R., Urban, J.F. Jr., and Paul, W.E. (2015). IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16, 161–169.

    Article  CAS  Google Scholar 

  • Huang, Y., Mao, K., Chen, X., Sun, M., Kawabe, T., Li, W., Usher, N., Zhu, J., Urban Jr., J.F., Paul, W.E., et al. (2018). S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119.

    Article  CAS  Google Scholar 

  • Klose, C.S.N., and Artis, D. (2016). Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17, 765–774.

    Article  CAS  Google Scholar 

  • Klose, C.S.N., Kiss, E.A., Schwierzeck, V., Ebert, K., Hoyler, T., d’Hargues, Y., Göppert, N., Croxford, A.L., Waisman, A., Tanriver, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261–265.

    Article  CAS  Google Scholar 

  • Klose, C.S.N., and Artis, D. (2020). Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res 30, 475–491.

    Article  Google Scholar 

  • Klose, C.S.N., Flach, M., Möhle, L., Rogell, L., Hoyler, T., Ebert, K., Fabiunke, C., Pfeifer, D., Sexl, V., Fonseca-Pereira, D., et al. (2014). Differentiation of type 1 ILCs from a common progenitor to all helperlike innate lymphoid cell lineages. Cell 157, 340–356.

    Article  CAS  Google Scholar 

  • Mazzurana, L., Czarnewski, P., Jonsson, V., Wigge, L., Ringnér, M., Williams, T.C., Ravindran, A., Björklund, Å.K., Säfholm, J., Nilsson, G., et al. (2021). Tissue-specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full-length single-cell RNA-sequencing. Cell Res 31, 554–568.

    Article  CAS  Google Scholar 

  • Miller, M.M., Patel, P.S., Bao, K., Danhorn, T., O’Connor, B.P., and Reinhardt, R.L. (2020). BATF acts as an essential regulator of IL-25-responsive migratory ILC2 cell fate and function. Sci Immunol 5.

  • Mirchandani, A.S., Besnard, A.G., Yip, E., Scott, C., Bain, C.C., Cerovic, V., Salmond, R.J., and Liew, F.Y. (2014). Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol 192, 2442–2448.

    Article  CAS  Google Scholar 

  • Mjösberg, J., and Rao, A. (2018). Lung inflammation originating in the gut. Science 359, 36–37.

    Article  Google Scholar 

  • Molofsky, A.B., Van Gool, F., Liang, H.E., Van Dyken, S.J., Nussbaum, J. C., Lee, J., Bluestone, J.A., and Locksley, R.M. (2015). Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174.

    Article  CAS  Google Scholar 

  • Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., Asano, K., Betsuyaku, T., and Koyasu, S. (2016). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17, 76–86.

    Article  CAS  Google Scholar 

  • Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, J.I., Ohtani, M., Fujii, H., and Koyasu, S. (2010). Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544.

    Article  CAS  Google Scholar 

  • Nagashima, H., Mahlakõiv, T., Shih, H.Y., Davis, F.P., Meylan, F., Huang, Y., Harrison, O.J., Yao, C., Mikami, Y., Urban Jr., J.F., et al. (2019). Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695.e6.

    Article  CAS  Google Scholar 

  • Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K.A., Bucks, C., Kane, C.M., Fallon, P.G., Pannell, R., et al. (2010). Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370.

    Article  CAS  Google Scholar 

  • Oliphant, C.J., Hwang, Y.Y., Walker, J.A., Salimi, M., Wong, S.H., Brewer, J.M., Englezakis, A., Barlow, J.L., Hams, E., Scanlon, S.T., et al. (2014). MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295.

    Article  CAS  Google Scholar 

  • Omilusik, K.D., Best, J.A., Yu, B., Goossens, S., Weidemann, A., Nguyen, J.V., Seuntjens, E., Stryjewska, A., Zweier, C., Roychoudhuri, R., et al. (2015). Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J Exp Med 212, 2027–2039.

    Article  Google Scholar 

  • Qi, J., Crinier, A., Escalière, B., Ye, Y., Wang, Z., Zhang, T., Batista, L., Liu, H., Hong, L., Wu, N., et al. (2021). Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. Cell Rep Med 2, 100353.

    Article  CAS  Google Scholar 

  • Qiu, J., Zhang, J., Ji, Y., Sun, H., Gu, Z., Sun, Q., Bai, M., Gong, J., Tang, J., Zhang, Y., et al. (2021). Tissue signals imprint Aiolos expression in ILC2s to modulate type 2 immunity. Mucosal Immunol 14, 1306–1322.

    Article  CAS  Google Scholar 

  • Ricardo-Gonzalez, R.R., Molofsky, A.B., and Locksley, R.M. (2022). ILC2s-development, divergence, dispersal. Curr Opin Immunol 75, 102168.

    Article  CAS  Google Scholar 

  • Ricardo-Gonzalez, R.R., Van Dyken, S.J., Schneider, C., Lee, J., Nussbaum, J.C., Liang, H.E., Vaka, D., Eckalbar, W.L., Molofsky, A. B., Erle, D.J., et al. (2018). Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol 19, 1093–1099.

    Article  CAS  Google Scholar 

  • Sanos, S.L., Bui, V.L., Mortha, A., Oberle, K., Heners, C., Johner, C., and Diefenbach, A. (2009). RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10, 83–91.

    Article  CAS  Google Scholar 

  • Schneider, C., Lee, J., Koga, S., Ricardo-Gonzalez, R.R., Nussbaum, J.C., Smith, L.K., Villeda, S.A., Liang, H.E., and Locksley, R.M. (2019). Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50, 1425–1438.e5.

    Article  CAS  Google Scholar 

  • Scott, C.L., Soen, B., Martens, L., Skrypek, N., Saelens, W., Taminau, J., Blancke, G., Van Isterdael, G., Huylebroeck, D., Haigh, J., et al. (2016). The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 213, 897–911.

    Article  CAS  Google Scholar 

  • Sonnenberg, G.F., and Hepworth, M.R. (2019). Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 19, 599–613.

    Google Scholar 

  • Spits, H. (2022). Neuropilin-1 flags lung-resident type 2 innate lymphoid cells. Nat Immunol 23, 151–152.

    Article  CAS  Google Scholar 

  • van Helden, M.J., Goossens, S., Daussy, C., Mathieu, A.L., Faure, F., Marçais, A., Vandamme, N., Farla, N., Mayol, K., Viel, S., et al. (2015). Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J Exp Med 212, 2015–2025.

    Article  CAS  Google Scholar 

  • Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. (2018). Innate lymphoid cells: 10 years on. Cell 174, 1054–1066.

    Article  CAS  Google Scholar 

  • Wu, X., Briseño, C.G., Grajales-Reyes, G.E., Haldar, M., Iwata, A., Kretzer, N.M., Kc, W., Tussiwand, R., Higashi, Y., Murphy, T.L., et al. (2016). Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc Natl Acad Sci USA 113, 14775–14780.

    Article  CAS  Google Scholar 

  • Yagi, R., Zhong, C., Northrup, D.L., Yu, F., Bouladoux, N., Spencer, S., Hu, G., Barron, L., Sharma, S., Nakayama, T., et al. (2014). The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388.

    Article  CAS  Google Scholar 

  • Zhang, J., Qiu, J., Zhou, W., Cao, J., Hu, X., Mi, W., Su, B., He, B., Qiu, J., and Shen, L. (2022). Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat Immunol 23, 237–250.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31930035, 91942311, 32061143028), Shanghai Science and Technology Commission (20410714000) and the National Key Research and Developmental Program of China (2021YFA1301400). We would like to thank Renyan Wu for processing the raw sequencing data; Drs. Hongxiang Sun and Ziyang Xu for assisting with RNA-seq data analysis. We also thank the generous support from Flow cytometry Core and Sequencing Core at Shanghai Institute of Immunology and animal facility of Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Su.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, L., Hao, Y. et al. Identification of two migratory colon ILC2 populations differentially expressing IL-17A and IL-5/IL-13. Sci. China Life Sci. 66, 67–80 (2023). https://doi.org/10.1007/s11427-022-2127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2127-2

Keywords

Navigation