Skip to main content
Log in

An expression atlas of miRNAs in Arabidopsis thaliana

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.S., Li, J., Stahle, M.I., Dubroué, A., Gubler, F., and Millar, A.A. (2007). Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104, 16371–16376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Chaos Cador, A., de Folter, S., Gamboa de Buen, A., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R.V., Piñeyro-Nelson, A., and Sánchez-Corrales, Y.E. (2010). Flower development. Arabidopsis Book 8, e0127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arikit, S., Xia, R., Kakrana, A., Huang, K., Zhai, J., Yan, Z., Valdés-López, O., Prince, S., Musket, T.A., Nguyen, H.T., Stacey, G., and Meyers, B.C. (2014). An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. Plant Cell 26, 4584–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell, M.J. (2008). Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779, 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64, 137–159.

    Article  CAS  PubMed  Google Scholar 

  • Axtell, M.J., and Bowman, J.L. (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci 13, 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Baumberger, N., and Baulcombe, D.C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102, 11928–11933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bologna, N.G., and Voinnet, O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65, 473–503.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet, E., Van de Peer, Y., and Rouzé, P. (2006). The small RNA world of plants. New Phytol 171, 451–468.

    Article  CAS  PubMed  Google Scholar 

  • Breakfield, N.W., Corcoran, D.L., Petricka, J.J., Shen, J., Sae-Seaw, J., Rubio-Somoza, I., Weigel, D., Ohler, U., and Benfey, P.N. (2012). High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22, 163–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107, 15269–15274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, T., Cui, P., and Xiong, L. (2015). The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43, 8283–8298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25, 21–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang, H.R., Schoenfeld, L.W., Ruby, J.G., Auyeung, V.C., Spies, N., Baek, D., Johnston, W.K., Russ, C., Luo, S., Babiarz, J.E., Blelloch, R., Schroth, G.P., Nusbaum, C., and Bartel, D.P. (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24, 992–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperus, J.T., Fahlgren, N., and Carrington, J.C. (2011). Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuperus, J.T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R.T., Takeda, A., Sullivan, C.M., Gilbert, S.D., Montgomery, T.A., and Carrington, J.C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17, 997–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech, B., and Hannon, G.J. (2011). Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Devers, E.A., Branscheid, A., May, P., and Krajinski, F. (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156, 1990–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Z., Han, M.H., and Fedoroff, N. (2008). The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105, 9970–9975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13, 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., and Carrington, J.C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE 2, e219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, X., Cui, Y., Li, Y., and Qi, Y. (2015). Transcription and processing of primary microRNAs are coupled by elongator complex in Arabidopsis. Nat Plants 1, 15075.

    Article  CAS  PubMed  Google Scholar 

  • Gandikota, M., Birkenbihl, R.P., Höhmann, S., Cardon, G.H., Saedler, H., and Huijser, P. (2007). The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., and Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones, S., Hui, J.H.L., Marco, A., and Ronshaugen, M. (2011). microRNA evolution by arm switching. EMBO Rep 12, 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurjar, A.K.S., Panwar, A.S., Gupta, R., and Mantri, S.S. (2016). pmiRExAt: plant miRNA expression atlas database and web applications. Database 2016, baw060.

    Google Scholar 

  • Hu, W., Wang, T., Yue, E., Zheng, S., and Xu, J.H. (2014). Flexible microRNA arm selection in rice. Biochem Biophys Res Commun 447, 526–530.

    Article  CAS  PubMed  Google Scholar 

  • Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M.C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., and Ishikawa, M. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39, 282–291.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., and Tomari, Y. (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39, 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran, G., Zheng, Y., Sumathipala, N., Jiang, H., Arrese, E.L., Soulages, J.L., Zhang, W., and Sunkar, R. (2010). Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong, D.H., Park, S., Zhai, J., Gurazada, S.G.R., De Paoli, E., Meyers, B.C., and Green, P.J. (2011). Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23, 4185–4207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). microRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57, 19–53.

    Article  CAS  PubMed  Google Scholar 

  • Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C.P. (2004). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007). Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5, e57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kidner, C.A., and Martienssen, R.A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Kuchenbauer, F., Mah, S.M., Heuser, M., McPherson, A., Rüschmann, J., Rouhi, A., Berg, T., Bullinger, L., Argiropoulos, B., Morin, R.D., Lai, D., Starczynowski, D.T., Karsan, A., Eaves, C.J., Watahiki, A., Wang, Y., Aparicio, S.A., Ganser, A., Krauter, J., Döhner, H., Döhner, K., Marra, M.A., Camargo, F.D., Palmqvist, L., Buske, C., and Humphries, R.K. (2011). Comprehensive analysis of mammalian miRNA* species and their role in myeloid cells. Blood 118, 3350–3358.

    Article  CAS  PubMed  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauressergues, D., Couzigou, J.M., Clemente, H.S., Martinez, Y., Dunand, C., Bécard, G., and Combier, J.P. (2015). Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15, 1501–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Liu, L., Zhuang, X., Yu, Y., Liu, X., Cui, X., Ji, L., Pan, Z., Cao, X., Mo, B., Zhang, F., Raikhel, N., Jiang, L., and Chen, X. (2013). microRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S.C., Liao, Y.L., Ho, M.R., Tsai, K.W., Lai, C.H., and Lin, W. (2012a). miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics 13, S13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S.C., Tsai, K.W., Pan, H.W., Jeng, Y.M., Ho, M.R., and Li, W.H. (2012b). microRNA 3′ end nucleotide modification patterns and arm selection preference in liver tissues. BMC Syst Biol 6, S14.

    Article  Google Scholar 

  • Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K., Lu, X.Y., Cui, X., Jin, H., and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  • Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). microRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manavella, P.A., Hagmann, J., Ott, F., Laubinger, S., Franz, M., Macek, B., and Weigel, D. (2012). Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151, 859–870.

    Article  CAS  PubMed  Google Scholar 

  • Marco, A., Macpherson, J.I., Ronshaugen, M., and Griffiths-Jones, S. (2012). microRNAs from the same precursor have different targeting properties. Silence 3, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., and Zhu, J.K. (2008). Criteria for annotation of plant microRNAs. Plant Cell 20, 3186–3190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G.J., and Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery, T.A., Howell, M.D., Cuperus, J.T., Li, D., Hansen, J.E., Alexander, A.L., Chapman, E.J., Fahlgren, N., Allen, E., and Carrington, J.C. (2008). Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141.

    Article  CAS  PubMed  Google Scholar 

  • Nag, A., King, S., and Jack, T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106, 22534–22539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa, M., Miura, S., and Nei, M. (2012). Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4, 230–239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamura, K., Liu, N., and Lai, E.C. (2009). Distinct mechanisms for microRNA strand selection by Drosophila argonautes. Mol Cell 36, 431–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura, K., Phillips, M.D., Tyler, D.M., Duan, H., Chou, Y., and Lai, E.C. (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15, 354–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palatnik, J.F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez, R., Warthmann, N., Allen, E., Dezulian, T., Huson, D., Carrington, J.C., and Weigel, D. (2007). Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R.S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102, 3691–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, W., Li, J., Song, R., Messing, J., and Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, Y., Denli, A.M., and Hannon, G.J. (2005). Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19, 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20, 3407–3425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, G., Xie, M., Dou, Y., Zhang, S., Zhang, C., and Yu, B. (2012). Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109, 12817–12821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Ro, S., Park, C., Young, D., Sanders, K.M., and Yan, W. (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35, 5944–5953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, K., and Chen, X. (2013). Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., and Lohmann, J.U. (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet 37, 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L., and Meyerowitz, E.M. (2007). Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134, 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49, 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Tang, G., Reinhart, B.J., Bartel, D.P., and Zamore, P.D. (2003). A biochemical framework for RNA silencing in plants. Genes Dev 17, 49–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todesco, M., Rubio-Somoza, I., Paz-Ares, J., and Weigel, D. (2010). A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 6, e1001031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore, P.D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret, H., Vazquez, F., Crété, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., and Wang, J.W. (2015). Coding function for non-coding RNA in plants—insights from miRNA encoded peptide (miPEP). Sci China Life Sci 58, 503–505.

    Article  PubMed  Google Scholar 

  • Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Shi, Y., Li, J., Xu, L., Fang, Y., Li, X., and Qi, Y. (2013). A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23, 645–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis miRNA genes. Plant Physiol 138, 2145–2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, B., Bi, L., Zheng, B., Ji, L., Chevalier, D., Agarwal, M., Ramachandran, V., Li, W., Lagrange, T., Walker, J.C., and Chen, X. (2008). The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105, 10073–10078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Liu, Y., and Yu, B. (2014). PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10, e1004841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, T.Q., Wang, J.W., and Zhou, C.M. (2015). The role of miR156 in developmental transitions in Nicotiana tabacum. Sci China Life Sci 58, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Gao, S., Zhou, X., Xia, J., Chellappan, P., Zhou, X., Zhang, X., and Jin, H. (2010a). Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11, R81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H.D., Raikhel, N., and Jin, H. (2011). Arabidopsis argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42, 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Yu, J., Li, D., Zhang, Z., Liu, F., Zhou, X., Wang, T., Ling, Y., and Su, Z. (2010b). PMRD: plant microRNA database. Nucleic Acids Res 38, D806–D813.

    Article  CAS  PubMed  Google Scholar 

  • Zielezinski, A., Dolata, J., Alaba, S., Kruszka, K., Pacak, A., Swida-Barteczka, A., Knop, K., Stepien, A., Bielewicz, D., Pietrykowska, H., Sierocka, I., Sobkowiak, L., Lakomiak, A., Jarmolowski, A., Szweykowska-Kulinska, Z., and Karlowski, W.M. (2015). mirEX 2.0—an integrated environment for expression profiling of plant microRNAs. BMC Plant Biol 15, 144.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants fromNational Key Research and Development Program of China (2016YFA0500800) and National Natural Science Foundation of China (31421001, 31225015) to Yijun Qi. Yijun Qi is a visiting investigator of the CAS Center for Excellence in Molecular Plant Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Li or Yijun Qi.

Electronic supplementary material

Figure S1

Correlation between two biological replicates of small RNA sequencing.

Figure S2

Small RNA size distribution and 5′ bias.

Figure S3

S-plots for miRNAs.

Figure S4

Expression pattern and strand bias of conserved versus non-conserved miRNAs.

Figure S5

Expression of representative miRNAs at vegetative stages.

Figure S6

Analysis of miRNA arm switch events.

Table S1

Summary of small RNA libraries used in this study

Table S2

Expression levels of miRNAs in all samples

Table S3

Expression levels of members of highly conserved miRNA families during development

Table S4

The sequences of probes used in small RNA Northern blot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Hu, Y., Cao, Y. et al. An expression atlas of miRNAs in Arabidopsis thaliana. Sci. China Life Sci. 61, 178–189 (2018). https://doi.org/10.1007/s11427-017-9199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9199-1

Keywords

Navigation