Skip to main content

Advertisement

Log in

Poliomyelitis is a current challenge: long-term sequelae and circulating vaccine-derived poliovirus

  • Review
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

For more than 20 years, the World Health Organization Western Pacific Region (WPR) has been polio-free. However, two current challenges are still polio-related. First, around half of poliomyelitis elderly survivors suffer late poliomyelitis sequelae with a substantial impact on daily activities and quality of life, experiencing varying degrees of residual weakness as they age. The post-polio syndrome as well as accelerated aging may be involved. Second, after the worldwide Sabin oral poliovirus (OPV) vaccination, the recent reappearance of strains of vaccine-derived poliovirus (VDPV) circulating in the environment is worrisome and able to persistent person-to-person transmission. Such VDPV strains exhibit atypical genetic characteristics and reversed neurovirulence that can cause paralysis similarly to wild poliovirus, posing a significant obstacle to the elimination of polio. Immunization is essential for preventing paralysis in those who are exposed to the poliovirus. Stress the necessity of maintaining high vaccination rates because declining immunity increases the likelihood of reemergence. If mankind wants to eradicate polio in the near future, measures to raise immunization rates and living conditions in poorer nations are needed, along with strict observation. New oral polio vaccine candidates offer a promissory tool for this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Racaniello VR, Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A. 1981;78(8):4887–91.

    Article  CAS  Google Scholar 

  2. Racaniello VR, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981;214(4523):916–9.

    Article  CAS  Google Scholar 

  3. Agol VI. Molecular mechanisms of poliovirus variation and evolution. Curr Top Microbiol Immunol. 2006;299:211–59.

    CAS  Google Scholar 

  4. Ward CD, Stokes MA, Flanegan JB. Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol. 1988;62(2):558–62.

    Article  CAS  Google Scholar 

  5. Arnold JJ, Cameron CE. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Biochemistry. 2004;43(18):5126–37.

    Article  CAS  Google Scholar 

  6. Wells VR, Plotch SJ, DeStefano JJ. Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. Virus Res. 2001;74(1–2):119–32.

    Article  CAS  Google Scholar 

  7. Racaniello VR. Poliovirus neurovirulence. Adv Virus Res. 1988;34:217–46.

    Article  CAS  Google Scholar 

  8. Sabin AB. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J Infect Dis. 1985;151(3):420–36.

    Article  CAS  Google Scholar 

  9. Bigouette JP, et al. Progress toward polio eradication - worldwide, January 2019-June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(34):1129–35.

    Article  Google Scholar 

  10. Chard AN, et al. Progress toward polio eradication - worldwide, January 2018-March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(25):784–9.

    Article  Google Scholar 

  11. Rachlin A, et al. Progress toward polio eradication - worldwide, January 2020-April 2022. MMWR Morb Mortal Wkly Rep. 2022;71(19):650–5.

    Article  Google Scholar 

  12. Wilkinson AL, et al. Surveillance to track progress toward polio eradication - worldwide, 2020–2021. MMWR Morb Mortal Wkly Rep. 2022;71(15):538–44.

    Article  Google Scholar 

  13. Malnou CE, et al. Effects of vaccine strain mutations in domain V of the internal ribosome entry segment compared in the wild type poliovirus type 1 context. J Biol Chem. 2004;279(11):10261–9.

    Article  CAS  Google Scholar 

  14. Svitkin YV, Maslova SV, Agol VI. The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology. 1985;147(2):243–52.

    Article  CAS  Google Scholar 

  15. Ochs K, et al. Impaired binding of standard initiation factors mediates poliovirus translation attenuation. J Virol. 2003;77(1):115–22.

    Article  CAS  Google Scholar 

  16. Avanzino BC, et al. Molecular mechanism of poliovirus Sabin vaccine strain attenuation. J Biol Chem. 2018;293(40):15471–82.

    Article  CAS  Google Scholar 

  17. de Breyne S, et al. Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc Natl Acad Sci U S A. 2009;106(23):9197–202.

    Article  Google Scholar 

  18. Hellen CU, et al. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993;90(16):7642–6.

    Article  CAS  Google Scholar 

  19. Hunt SL, Jackson RJ. Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA. 1999;5(3):344–59.

    Article  CAS  Google Scholar 

  20. Meerovitch K, et al. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993;67(7):3798–807.

    Article  CAS  Google Scholar 

  21. Blyn LB, et al. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol. 1997;71(8):6243–6.

    Article  CAS  Google Scholar 

  22. Hellen CU, et al. The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5’ nontranslated region. J Virol. 1994;68(2):941–50.

    Article  CAS  Google Scholar 

  23. Kafasla P, et al. Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J. 2010;29(21):3710–22.

    Article  CAS  Google Scholar 

  24. Westrop GD, et al. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol. 1989;63(3):1338–44.

    Article  CAS  Google Scholar 

  25. Kawamura N, et al. Determinants in the 5’ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol. 1989;63(3):1302–9.

    Article  CAS  Google Scholar 

  26. Moss EG, O’Neill RE, Racaniello VR. Mapping of attenuating sequences of an avirulent poliovirus type 2 strain. J Virol. 1989;63(5):1884–90.

    Article  CAS  Google Scholar 

  27. Guest S, et al. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J Virol. 2004;78(20):11097–107.

    Article  CAS  Google Scholar 

  28. Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Invest. 2004;113(12):1743–53.

    Article  CAS  Google Scholar 

  29. He Y, et al. Complexes of poliovirus serotypes with their common cellular receptor, CD155. J Virol. 2003;77(8):4827–35.

    Article  CAS  Google Scholar 

  30. Iwasaki A, et al. Immunofluorescence analysis of poliovirus receptor expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J Infect Dis. 2002;186(5):585–92.

    Article  CAS  Google Scholar 

  31. Gonzalez H, et al. Intravenous immunoglobulin treatment of the post-polio syndrome: sustained effects on quality of life variables and cytokine expression after one year follow up. J Neuroinflammation. 2012;9:167.

    Article  CAS  Google Scholar 

  32. Girard S, et al. Restriction of poliovirus RNA replication in persistently infected nerve cells. J Gen Virol. 2002;83(Pt 5):1087–93.

    Article  CAS  Google Scholar 

  33. Baj A, et al. Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis. 2015;35:107–16.

    Article  Google Scholar 

  34. Minor PD. The polio-eradication programme and issues of the end game. J Gen Virol. 2012;93(Pt 3):457–74.

    Article  CAS  Google Scholar 

  35. Connor RI, et al. Mucosal immunity to poliovirus. Mucosal Immunol. 2022;15(1):1–9.

    Article  CAS  Google Scholar 

  36. Wright PF, et al. Intestinal immunity is a determinant of clearance of poliovirus after oral vaccination. J Infect Dis. 2014;209(10):1628–34.

    Article  CAS  Google Scholar 

  37. Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity. 2022;55(5):800–18.

    Article  CAS  Google Scholar 

  38. Herremans TM, et al. Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus. J Immunol. 1999;162(8):5011–8.

    Article  CAS  Google Scholar 

  39. Resik S, et al. Does simultaneous administration of bivalent (types 1 and 3) oral poliovirus vaccine and inactivated poliovirus vaccine induce mucosal cross-immunity to poliovirus type 2? Clin Infect Dis. 2018;67(suppl_1):S51–6.

    Article  CAS  Google Scholar 

  40. Brickley EB, et al. Intestinal immune responses to type 2 oral polio vaccine (OPV) challenge in infants previously immunized with bivalent OPV and either high-dose or standard inactivated polio vaccine. J Infect Dis. 2018;217(3):371–80.

    Article  CAS  Google Scholar 

  41. Valtanen S, et al. Poliovirus-specific intestinal antibody responses coincide with decline of poliovirus excretion. J Infect Dis. 2000;182(1):1–5.

    Article  CAS  Google Scholar 

  42. Wright PF, et al. Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled trial in Latin American infants. Lancet Infect Dis. 2016;16(12):1377–84.

    Article  CAS  Google Scholar 

  43. Macklin GR, et al. Vaccine schedules and the effect on humoral and intestinal immunity against poliovirus: a systematic review and network meta-analysis. Lancet Infect Dis. 2019;19(10):1121–8.

    Article  CAS  Google Scholar 

  44. Grassly NC, et al. Waning intestinal immunity after vaccination with oral poliovirus vaccines in India. J Infect Dis. 2012;205(10):1554–61.

    Article  CAS  Google Scholar 

  45. Brickley EB, et al. Intestinal antibody responses to a live oral poliovirus vaccine challenge among adults previously immunized with inactivated polio vaccine in Sweden. BMJ Glob Health. 2019;4(4):e001613.

    Article  Google Scholar 

  46. Abbink F, et al. Poliovirus-specific memory immunity in seronegative elderly people does not protect against virus excretion. J Infect Dis. 2005;191(6):990–9.

    Article  Google Scholar 

  47. Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology. 2015;61(4):336–42.

    Article  CAS  Google Scholar 

  48. Larocca AMV, Bianchi FP, Bozzi A, Tafuri S, Stefanizzi P, Germinario CA. Long-term immunogenicity of inactivated and oral polio vaccines: An Italian retrospective cohort study. Vaccines (Basel). 2022;10(8):1329. https://doi.org/10.3390/vaccines10081329.

  49. Bosch X. Post-polio syndrome recognised by European parliament. Lancet Neurol. 2004;3(1):4.

    Article  Google Scholar 

  50. Ragonese P, et al. Prevalence and risk factors of post-polio syndrome in a cohort of polio survivors. J Neurol Sci. 2005;236(1–2):31–5.

    Article  Google Scholar 

  51. Meiner Z, et al. Risk factors for functional deterioration in a cohort with late effects of poliomyelitis: a ten-year follow-up study. NeuroRehabilitation. 2021;49(3):491–9.

    Article  Google Scholar 

  52. Kay L, et al. Neurological symptoms in danes with a history of poliomyelitis: lifelong follow-up of late symptoms, their association with initial symptoms of polio, and presence of postpolio syndrome. Eur Neurol. 2018;80(5–6):295–303.

    Article  Google Scholar 

  53. Lo JK, Robinson LR. Postpolio syndrome and the late effects of poliomyelitis. Part 1. pathogenesis, biomechanical considerations, diagnosis, and investigations. Muscle Nerve. 2018;58(6):751–9.

    Article  Google Scholar 

  54. Kang JH, Lin HC. Comorbidity profile of poliomyelitis survivors in a Chinese population: a population-based study. J Neurol. 2011;258(6):1026–33.

    Article  Google Scholar 

  55. Nielsen NM, et al. Long-term mortality after poliomyelitis. Epidemiology. 2003;14(3):355–60.

    Article  Google Scholar 

  56. Nielsen NM, et al. Cancer risk in a cohort of polio patients. Int J Cancer. 2001;92(4):605–8.

    Article  CAS  Google Scholar 

  57. Lin MC, et al. Pulmonary function and spinal characteristics: their relationships in persons with idiopathic and postpoliomyelitic scoliosis. Arch Phys Med Rehabil. 2001;82(3):335–41.

    Article  CAS  Google Scholar 

  58. Schwartz I, et al. The association between post-polio symptoms as measured by the index of post-polio sequelae and self-reported functional status. J Neurol Sci. 2014;345(1–2):87–91.

    Article  Google Scholar 

  59. Amtmann D, et al. Symptom profiles in individuals aging with post-polio syndrome. J Am Geriatr Soc. 2013;61(10):1813–5.

    Article  Google Scholar 

  60. Oluwasanmi OJ, et al. Postpolio syndrome: a review of lived experiences of patients. Int J Appl Basic Med Res. 2019;9(3):129–34.

    Article  Google Scholar 

  61. Wendebourg MJ, et al. Spinal cord gray matter atrophy is associated with functional decline in post-polio syndrome. Eur J Neurol. 2022;29(5):1435–45.

    Article  Google Scholar 

  62. Brogardh C, Lexell J and Hammarlund CS. The influence of walking limitations on daily life: a mixed-methods study of 14 persons with late effects of polio. Int J Environ Res Public Health, 2022;19(13).

  63. Brogardh C, Lexell J, and Hammarlund CS. Fall-related activity avoidance among persons with late effects of polio and its influence on daily life: a mixed-methods study. Int J Environ Res Public Health, 2021;18(13).

  64. Nkowane BM, et al. Vaccine-associated paralytic poliomyelitis. United States: 1973 through 1984. JAMA. 1987;257(10):1335–40.

    Article  CAS  Google Scholar 

  65. Kew OM, et al. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol. 2005;59:587–635.

    Article  CAS  Google Scholar 

  66. Cann AJ, et al. Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Res. 1984;12(20):7787–92.

    Article  CAS  Google Scholar 

  67. Evans DM, et al. Increased neurovirulence associated with a single nucleotide change in a noncoding region of the Sabin type 3 poliovaccine genome. Nature. 1985;314(6011):548–50.

    Article  CAS  Google Scholar 

  68. Kew OM, et al. Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol. 1981;56(Pt 2):337–47.

    Article  CAS  Google Scholar 

  69. Foiadelli T, et al. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis. BMC Infect Dis. 2016;16:277.

    Article  Google Scholar 

  70. Kapusinszky B, et al. Molecular characterization of poliovirus isolates from children who contracted vaccine-associated paralytic poliomyelitis (VAPP) following administration of monovalent type 3 oral poliovirus vaccine in the 1960s in Hungary. FEMS Immunol Med Microbiol. 2010;58(2):211–7.

    Article  CAS  Google Scholar 

  71. Martinez CV, et al. Shedding of sabin poliovirus type 3 containing the nucleotide 472 uracil-to-cytosine point mutation after administration of oral poliovirus vaccine. J Infect Dis. 2004;190(2):409–16.

    Article  CAS  Google Scholar 

  72. Guo J, et al. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine. 2015;33(10):1235–42.

    Article  Google Scholar 

  73. Alleman MM, et al. Update on vaccine-derived poliovirus outbreaks - worldwide, January 2020-June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(49):1691–9.

    Article  CAS  Google Scholar 

  74. Alleman MM, et al. Update on vaccine-derived poliovirus outbreaks - worldwide, July 2019-February 2020. MMWR Morb Mortal Wkly Rep. 2020;69(16):489–95.

    Article  Google Scholar 

  75. Jorba J, et al. Update on vaccine-derived poliovirus outbreaks - worldwide, January 2018-June 2019. MMWR Morb Mortal Wkly Rep. 2019;68(45):1024–8.

    Article  Google Scholar 

  76. Garon J, et al. Polio endgame: the global switch from tOPV to bOPV. Expert Rev Vaccines. 2016;15(6):693–708.

    Article  CAS  Google Scholar 

  77. Voorman A, Lyons H, Bennette C, Kovacs S, Makam JK, F Vertefeuille J, Tallis G. Analysis of population immunity to poliovirus following cessation of trivalent oral polio vaccine. Vaccine. 2022:S0264-410X(22)00277-8. https://doi.org/10.1016/j.vaccine.2022.03.013.

  78. Blake IM, et al. Type 2 poliovirus detection after global withdrawal of trivalent oral vaccine. N Engl J Med. 2018;379(9):834–45.

    Article  Google Scholar 

  79. Patel M, et al. Polio endgame: the global introduction of inactivated polio vaccine. Expert Rev Vaccines. 2015;14(5):749–62.

    Article  CAS  Google Scholar 

  80. Khetsuriani N, et al. Responding to a cVDPV1 outbreak in Ukraine: implications, challenges and opportunities. Vaccine. 2017;35(36):4769–76.

    Article  Google Scholar 

  81. Al-Qassimi MA, et al. Circulating vaccine derived polio virus type 1 outbreak, Saadah governorate, Yemen, 2020. BMC Infect Dis. 2022;22(1):414.

    Article  Google Scholar 

  82. Link-Gelles R, et al. Public health response to a case of paralytic poliomyelitis in an unvaccinated person and detection of poliovirus in wastewater - New York, June-August 2022. MMWR Morb Mortal Wkly Rep. 2022;71(33):1065–8.

    Article  Google Scholar 

  83. Wise J. Poliovirus is detected in sewage from north and east London. BMJ. 2022;377: o1546.

    Article  Google Scholar 

  84. Hill M, Bandyopadhyay AS, Pollard AJ. Emergence of vaccine-derived poliovirus in high-income settings in the absence of oral polio vaccine use. Lancet. 2022;400(10354):713–5.

    Article  Google Scholar 

  85. Macadam AJ, et al. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication. J Virol. 2006;80(17):8653–63.

    Article  CAS  Google Scholar 

  86. Yeh MT, et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence. Cell Host Microbe. 2020;27(5):736-751.e8.

    Article  CAS  Google Scholar 

  87. Konopka-Anstadt JL, et al. Development of a new oral poliovirus vaccine for the eradication end game using codon deoptimization. NPJ Vaccines. 2020;5(1):26.

    Article  Google Scholar 

  88. Wahid R, et al. Assessment of genetic changes and neurovirulence of shed Sabin and novel type 2 oral polio vaccine viruses. NPJ Vaccines. 2021;6(1):94.

    Article  CAS  Google Scholar 

  89. De Coster I, et al. Safety and immunogenicity of two novel type 2 oral poliovirus vaccine candidates compared with a monovalent type 2 oral poliovirus vaccine in healthy adults: two clinical trials. Lancet. 2021;397(10268):39–50.

    Article  Google Scholar 

  90. Saez-Llorens X, et al. Safety and immunogenicity of two novel type 2 oral poliovirus vaccine candidates compared with a monovalent type 2 oral poliovirus vaccine in children and infants: two clinical trials. Lancet. 2021;397(10268):27–38.

    Article  CAS  Google Scholar 

  91. Wahid R, et al. Evaluating stability of attenuated Sabin and two novel type 2 oral poliovirus vaccines in children. NPJ Vaccines. 2022;7(1):19.

    Article  CAS  Google Scholar 

Download references

Funding

This research was partially funded by the Universidad of Buenos Aires (UBACYT N°20020190100119BA to JQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Quarleri.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarleri, J. Poliomyelitis is a current challenge: long-term sequelae and circulating vaccine-derived poliovirus. GeroScience 45, 707–717 (2023). https://doi.org/10.1007/s11357-022-00672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00672-7

Keywords

Navigation