Skip to main content

Advertisement

P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular nucleotides acting via P2 receptors play important roles in cardiovascular physiology/pathophysiology. Pyrimidine nucleotides activate four G protein-coupled P2Y receptors (P2YRs): P2Y2 and P2Y4 (UTP-activated), P2Y6, and P2Y14. Previously, we showed that uridine 5′-triphosphate (UTP) activating P2Y2R reduced infarct size and improved mouse heart function after myocardial infarct (MI). Here, we examined the cardioprotective role of P2Y2R in vitro and in vivo following MI using uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt (MRS2768), a selective and more stable P2Y2R agonist. Cultured rat cardiomyocytes pretreated with MRS2768 displayed protection from hypoxia [as revealed by lactate dehydrogenase (LDH) release and propidium iodide (PI) binding], which was reduced by P2Y2R antagonist, AR-C118925 (5-((5-(2,8-dimethyl-5H-dibenzo[a,d][7]annulen-5-yl)-2-oxo-4-thioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-N-(1H-tetrazol-5-yl)furan-2-carboxamide). In vivo, echocardiography and infarct size staining of triphenyltetrazolium chloride (TTC) in 3 groups of mice 24 h post-MI: sham, MI, and MI+MRS2768 indicated protection. Fractional shortening (FS) was higher in MRS2768-treated mice than in MI alone (40.0 ± 3.1 % vs. 33.4 ± 2.7 %, p < 0.001). Troponin T and tumor necrosis factor-α (TNF-α) measurements demonstrated that MRS2768 pretreatment reduced myocardial damage (p < 0.05) and c-Jun phosphorylation increased. Thus, P2Y2R activation protects cardiomyocytes from hypoxia in vitro and reduces post-ischemic myocardial damage in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–e171

    Article  PubMed  Google Scholar 

  2. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  PubMed  CAS  Google Scholar 

  3. Downey JM, Liu GS, Thornton JD (1993) Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 27(1):3–8

    Article  PubMed  CAS  Google Scholar 

  4. Miura T, Tsuchida A (1999) Adenosine and preconditioning revisited. Clin Exp Pharmacol Physiol 26:92–99

    Article  PubMed  CAS  Google Scholar 

  5. Golan O, Issan Y, Isak A, Leipziger J, Robaye B, Shainberg A (2011) Extracellular nucleotide derivatives protect cardiomyocytes against hypoxic stress. Biochem Pharmacol 81(10):1219–1227

    Article  PubMed  CAS  Google Scholar 

  6. Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar A, Birk E, Pinhas L, Leipziger J, Don J, Porat E (2011) UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol 82(9):1126–1133

    Article  PubMed  CAS  Google Scholar 

  7. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4(1):1–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MAM, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919

    Article  PubMed  CAS  Google Scholar 

  9. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–U165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  12. Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U, Williams M (1997) Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18(3):79–82

    Article  PubMed  CAS  Google Scholar 

  13. Burnstock G, Kennedy C (1986) A dual function for adenosine 5′-triphosphate in the regulation of vascular tone—excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res 58(3):319–330

    Article  PubMed  CAS  Google Scholar 

  14. Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    PubMed  CAS  Google Scholar 

  15. Ralevic V, Burnstock G (1991) Roles of P2-purinoceptors in the cardiovascular-system. Circulation 84(1):1–14

    Article  PubMed  CAS  Google Scholar 

  16. Erlinge D (1998) Extracellular ATP: a growth factor for vascular smooth muscle cells. Gen Pharmacol 31(1):1–8

    Article  PubMed  CAS  Google Scholar 

  17. Hou MY, Moller S, Edvinsson L, Erlinge D (2000) Cytokines induce upregulation of vascular P2Y2 receptors and increased mitogenic responses to UTP and ATP. Arterioscler Thromb Vasc Biol 20(9):2064–2069

    Article  PubMed  CAS  Google Scholar 

  18. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  PubMed  CAS  Google Scholar 

  19. Erlinge D (2011) P2Y receptors in health and disease. Adv Pharmacol 61:417–439

    Article  PubMed  CAS  Google Scholar 

  20. Ko H, Carter RL, Cosyn L, Petrelli R, de Castro S, Besada P, Zhou Y, Cappellacci L, Franchetti P, Grifantini M, Van Calenbergh S, Harden TK, Jacobson KA (2008) Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorg Med Chem 16(12):6319–6332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Shneyvays V, Nawrath H, Jacobson KA, Shainberg A (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243(2):383–397

    Article  PubMed  CAS  Google Scholar 

  22. Safran N, Shneyvays V, Balas N, Jacobson KA, Shainberg A (2001) Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 217:143–152

    Article  PubMed  CAS  Google Scholar 

  23. El Ani D, Jacobson KA, Shainberg A (1994) Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol 48(4):727–735

    Article  PubMed  Google Scholar 

  24. Hochhauser E, Cheporko Y, Yasovich N, Pinchas L, Offen D, Barhum Y, Pannet H, Tobar A, Vidne BA, Birk E (2007) Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochem Biophys 47(1):11–19

    PubMed  CAS  Google Scholar 

  25. Gao XM, Dart AM, Dewar E, Jennings G, Du XJ (2000) Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 45(2):330–338

    Article  PubMed  CAS  Google Scholar 

  26. Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA (2003) Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284(6):H2351–H2359

    PubMed  CAS  Google Scholar 

  27. Yitzhaki S, Shneyvays V, Jacobson KA, Shainberg A (2005) Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochem Pharmacol 69(8):1215–1223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Maruoka H, Jayasekara MP, Barrett MO, Franklin DA, de Castro S, Kim N, Costanzi S, Harden TK, Jacobson KA (2011) Pyrimidine nucleotides with 4-alkyloxyimino and terminal tetraphosphate delta-ester modifications as selective agonists of the P2Y4 receptor. J Med Chem 54(12):4018–4033

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Brunschweiger A, Christa E, Müller CE (2006) P2 Receptors activated by uracil nucleotides—an update. Curr Med Chem 13:289–312

    Article  PubMed  CAS  Google Scholar 

  30. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711

    Article  PubMed  CAS  Google Scholar 

  31. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35(3):537–544

    Article  PubMed  CAS  Google Scholar 

  32. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99(10):1100–1108

    Article  PubMed  CAS  Google Scholar 

  33. Wagner JG, Roth RA (2000) Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev 52(3):349–374

    PubMed  CAS  Google Scholar 

  34. Becker MD, Garman K, Whitcup SM, Planck SR, Rosenbaum JT (2001) Inhibition of leukocyte sticking and infiltration, but not rolling, by antibodies to ICAM-1 and LFA-1 in murine endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 42(11):2563–2566

    PubMed  CAS  Google Scholar 

  35. Kukulski F, Ben Yebdri F, Bahrami F, Fausther M, Tremblay A, Sevigny J (2010) Endothelial P2Y2 receptor regulates LPS-induced neutrophil transendothelial migration in vitro. Mol Immunol 47(5):991–999

    Article  PubMed  CAS  Google Scholar 

  36. Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG (2010) Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 3(125):ra45

    PubMed  Google Scholar 

  37. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795

    Article  PubMed  CAS  Google Scholar 

  38. Kukulski F, Ben Yebdri F, Lecka J, Kauffenstein G, Levesque SA, Martin-Satue M, Sevigny J (2009) Extracellular ATP and P2 receptors are required for IL-8 to induce neutrophil migration. Cytokine 46(2):166–170

    Article  PubMed  CAS  Google Scholar 

  39. Inoue Y, Chen Y, Hirsh MI, Yip L, Junger WG (2008) A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30(2):173–177

    PubMed  Google Scholar 

  40. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8(8):504–512

    PubMed  CAS  Google Scholar 

  41. Lefer DJ, Shandelya SM, Serrano CV Jr, Becker LC, Kuppusamy P, Zweier JL (1993) Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 88(4 Pt 1):1779–1787

    Article  PubMed  CAS  Google Scholar 

  42. Ma XL, Tsao PS, Lefer AM (1991) Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 88(4):1237–1243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Arai M, Lefer DJ, So T, DiPaula A, Aversano T, Becker LC (1996) An anti-CD18 antibody limits infarct size and preserves left ventricular function in dogs with ischemia and 48-hour reperfusion. J Am Coll Cardiol 27(5):1278–1285

    Article  PubMed  CAS  Google Scholar 

  44. Aversano T, Zhou W, Nedelman M, Nakada M, Weisman H (1995) A chimeric IgG4 monoclonal antibody directed against CD18 reduces infarct size in a primate model of myocardial ischemia and reperfusion. J Am Coll Cardiol 25(3):781–788

    Article  PubMed  CAS  Google Scholar 

  45. Dove A (2000) CD18 trials disappoint again. Nat Biotechnol 18(8):817–818

    Article  PubMed  CAS  Google Scholar 

  46. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Roberts R, DeMello V, Sobel BE (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53(3 Suppl):I204–I206

    PubMed  CAS  Google Scholar 

  48. Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13(16):1877–1893

    Article  PubMed  CAS  Google Scholar 

  49. Fryer RM, Patel HH, Hsu AK, Gross GJ (2001) Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281(3):H1184–H1192

    PubMed  CAS  Google Scholar 

  50. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    Article  PubMed  CAS  Google Scholar 

  51. Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH (2001) Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 88(3):305–312

    Article  PubMed  CAS  Google Scholar 

  52. Cohen MV, Downey LM (1995) Preconditioning during ischemia: basic mechanisms and potential clinical applications. Cardiol Rev 3:137–149

    Article  Google Scholar 

  53. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362(Pt 3):561–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Ben-Ari Z, Zilbermints V, Pappo O, Avlas O, Sharon E, Greif F, Cheporko Y, Ravid A, Shapiro R, Hochhauser E (2011) Erythropoietin increases survival and attenuates fulminant hepatic failure injury induced by D-galactosamine/lipopolysaccharide in mice. Transplantation 92(1):18–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research support from the Intramural Research Program of the NIH, NIDDK is acknowledged.

This work was supported in part by Israel Science Foundation grant no. 1352/09. The sponsors were not involved in any way in the making of this paper or the decision to submit it for publication.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asher Shainberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochhauser, E., Cohen, R., Waldman, M. et al. P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signalling 9, 633–642 (2013). https://doi.org/10.1007/s11302-013-9374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9374-3

Keywords