Skip to main content

Advertisement

An Erratum to this article was published on 04 May 2007

Abstract

The Wnt signaling pathways play fundamental roles in the differentiation, proliferation, death and function of many cells and as a result are involved in critical developmental, growth and homeostatic processes in animals. There are four currently known pathways of Wnt signaling; the so-called canonical or Wnt/β-catenin pathway, the Wnt/Ca+2 pathway involving Protein Kinase A, the planar cell polarity pathway and a pathway involving Protein Kinase C that functions in muscle myogenesis. The best studied of these is the Wnt/β-catenin pathway. The Wnts are an evolutionarily highly conserved family of genes/proteins. Control of the Wnt pathways is modulated by a number of the proteins that either interact with the Wnt ligands directly, or with the low density lipoprotein-receptor related proteins (LRP) 5 and 6 that along with one of several Frizzled proteins function as co-receptors for the Wnt ligands. Aberrant regulation resulting as a consequence of mutations in any of several components of the Wnt pathway and/or protein modulators of the pathway have been shown to cause a wide spectrum of diseases. This review will briefly touch on various diseases of Wnt signaling including cancer, aortic valve calcification and several bone related phenotypes. Our emerging understanding of Wnt signaling offers great hope that new molecular based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31:99–109

    Article  PubMed  CAS  Google Scholar 

  2. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homology of the mouse mammary oncogen int-1 is identical to the segment polarity gene wingless. Cell 1987;50:649–57

    Article  PubMed  CAS  Google Scholar 

  3. Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA. Phenocopies induced with antisense RNA identify the wingless gene. Cell 1987;50:659–63

    Article  PubMed  CAS  Google Scholar 

  4. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810

    Article  PubMed  CAS  Google Scholar 

  5. Mlodzik M. Planar cell polarization: do the same mechanisms regulate drosophila tissue polarity and vertebrate gastrulation? Trends Genet 2002;18:564–71

    Article  PubMed  CAS  Google Scholar 

  6. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca+2 pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000;16:279–83

    Article  PubMed  CAS  Google Scholar 

  7. Chen AE, Ginty DB, Fan C-M. Protein kinase a signalling via CREB controls myogenesis induced by Wnt proteins. Nature 2005;433:317–22

    Article  PubMed  CAS  Google Scholar 

  8. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Cell Dev Biol 1998;14:59–88

    Article  CAS  Google Scholar 

  9. Willert K, Nusse R. β-catenin: a key mediator of Wnt signaling. Development 1998;8:95–102

    CAS  Google Scholar 

  10. Nusse R, Varmus HE. Wnt genes. Cell 1992;69:1073–87

    Article  PubMed  CAS  Google Scholar 

  11. Prunier C, Hocevar BA, Howe PH. Wnt signaling: physiology and pathology. Growth Factors 2004;22:141–50

    Article  PubMed  CAS  Google Scholar 

  12. Johnson ML, Harnish K, Nusse R, Van Hul W. LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 2004; 19:1749–57

    Article  PubMed  CAS  Google Scholar 

  13. Capelluto DGS, Kutateladze TG, Habas R, Finklestein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002;419:726–9

    Article  PubMed  CAS  Google Scholar 

  14. Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and frizzled homologs in a G-protein-dependent manner. Curr Biol 1999;9:695–8

    Article  PubMed  CAS  Google Scholar 

  15. Kuhl M, Shedahl LC, Malbon CC, Moon RT. Ca+2/calmodulin-dependent protein kinase II is stimulated by Wnt and frizzled homologs and promotes ventral cell fates in xenopus. J Biol Chem 2000;275:12701–11

    Article  PubMed  CAS  Google Scholar 

  16. Wang H-Y, Malbon GC. Wnt signaling, Ca+2, and cyclic GMP: visualizing frizzled functions. Science 2003;300:1529–30

    Article  PubMed  CAS  Google Scholar 

  17. Shedahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca+2 flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 2006;161:769–77

    Article  CAS  Google Scholar 

  18. Pourquie O. A new canon. Nature 2005;433:208–9

    Article  PubMed  CAS  Google Scholar 

  19. Polakis P. Wnt signaling and cancer. Genes Dev 2000;14:1837–51

    PubMed  CAS  Google Scholar 

  20. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000;103:311–20

    Article  PubMed  CAS  Google Scholar 

  21. Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003;94:225–9

    Article  PubMed  CAS  Google Scholar 

  22. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843–50

    Article  PubMed  CAS  Google Scholar 

  23. Katoh M. Wnt/PCP signaling pathway and human cancer. Oncol Rep 2005;14:1583–8

    PubMed  CAS  Google Scholar 

  24. Kinzler KW, Nilbert MC, Su L-K, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661–5

    Article  PubMed  CAS  Google Scholar 

  25. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991;253:665–9

    Article  PubMed  CAS  Google Scholar 

  26. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600

    Article  PubMed  CAS  Google Scholar 

  27. Laurent-Puig P, Beroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1998;26:269–70

    Article  PubMed  CAS  Google Scholar 

  28. Miyoshi Y, Nagase H, Ando H, Ichii S, Nakatsura S, Aoki T, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:223–9

    Google Scholar 

  29. Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S, et al. Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathology 2002;160:2055–3172

    PubMed  CAS  Google Scholar 

  30. Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 1998;10:591–4

    PubMed  CAS  Google Scholar 

  31. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL, et al. The mouse fused locus encodes axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997;90:181–92

    Article  PubMed  CAS  Google Scholar 

  32. Mai M, Qian C, Yokomizo A, Smith DI, Liu W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23–q24. Genomics 1999;55:341–4

    Article  PubMed  CAS  Google Scholar 

  33. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, et al. Axin1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of Axin1. Nat Genet 2000;24:245–50

    Article  PubMed  CAS  Google Scholar 

  34. Salahshor S, Woodgett JR. The links between Axin and carcinogenesis. J Clin Pathol 2005;58:225–36

    Article  PubMed  CAS  Google Scholar 

  35. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signaling. Nat Genet 2000;26:146–7

    Article  PubMed  CAS  Google Scholar 

  36. Chesire DB, Isaacs WB. Beta-Catenin signaling in prostate cancer: an early perspective. Endocr-Relat Cancer 2003;10:537–60

    Article  PubMed  CAS  Google Scholar 

  37. Brown AMC. Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 2001;3:351–5

    Article  PubMed  CAS  Google Scholar 

  38. Janssens N, Janicot M, Perera T. The Wnt-dependent signaling pathways as targets in oncology drug discovery. Investigational new drugs published online: 28 January 2006

  39. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2483–94

    Article  PubMed  CAS  Google Scholar 

  40. Glass DA, Patel MS, Karsenty G. A new insight into the formation of osteolytic lesions in multiple myeloma. New Engl J Med 2003;349:2479–80

    Article  PubMed  CAS  Google Scholar 

  41. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004;74: 1043–50

    Article  PubMed  CAS  Google Scholar 

  42. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Rev 2000;33:1–12

    Article  PubMed  Google Scholar 

  43. Gould TD, Manji HK. The Wnt signaling pathway in bipolar disorder. Neuroscientist 2002;8:497–511

    Article  PubMed  CAS  Google Scholar 

  44. Huristone AFL, Haramis A-PG, Wiehholds E, Begthel H, Korving J, van Eeden F, et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 2003;425:633–7

    Article  CAS  Google Scholar 

  45. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 2005;112 Suppl 9:I229–34

    PubMed  Google Scholar 

  46. Shin V, Zebboudj AF, Bostrom K. Endothelial cells modulate osteogenesis in calcifying vascular cells. J Vasc Res 2004;41: 193–201

    Article  PubMed  Google Scholar 

  47. Abedin M, Tintut Y, Demer L. Vascular calcification; mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161–70

    Article  PubMed  CAS  Google Scholar 

  48. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan BS, Springett M, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003;107:2181–4

    Article  PubMed  Google Scholar 

  49. Karsenty G. The complexities of skeletal biology. Nature 2003;423:316–8

    Article  PubMed  CAS  Google Scholar 

  50. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J Am Coll Cardiol 1997;29:630–4

    Article  PubMed  CAS  Google Scholar 

  51. Wilson PW. Assessing coronary heart disease risk with traditional and novel risk factors. Clin Cardiol 2004;27 6 Suppl 3:III7–11

    PubMed  Google Scholar 

  52. Kannel WB, D’Agostino RB, Sullivan L, Wilson PW. Concept and usefulness of cardiovascular risk profiles. Am Heart J 2004;148:16–26

    Article  PubMed  Google Scholar 

  53. O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a) and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 1996;16:523–32

    PubMed  CAS  Google Scholar 

  54. Sprecher DL, Schaefer EJ, Kent KM, Gregg RF, Zech LA, Hoeg JM, et al. Cardiovascular features of homozygous familial hypercholesterolemia: analysis of 16 patients. Am J Cardiol 1984;54:20–30

    Article  PubMed  CAS  Google Scholar 

  55. Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med 2003;349:717–8

    Article  PubMed  Google Scholar 

  56. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 2002;105:2660–5

    Article  PubMed  CAS  Google Scholar 

  57. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11–9

    Article  PubMed  CAS  Google Scholar 

  58. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513–23

    Article  PubMed  CAS  Google Scholar 

  59. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/b-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Develop Cell 2005;8:727–38

    Article  CAS  Google Scholar 

  60. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/b-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Develop Cell 2005;8:739–50

    Article  CAS  Google Scholar 

  61. Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Develop Cell 2005;8:751–64

    Article  CAS  Google Scholar 

  62. Shao J-S, Cheng S-L, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 2005;115:1210–20

    Article  PubMed  CAS  Google Scholar 

  63. Johnson ML, Summerfield DT. Parameters of LRP5 from a structural and molecular perspective. Crit Rev Eukaryot Gene Expr 2005;15:229–42

    PubMed  CAS  Google Scholar 

  64. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000;407:530–5

    Article  PubMed  CAS  Google Scholar 

  65. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535–8

    Article  PubMed  CAS  Google Scholar 

  66. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513–21

    Article  PubMed  CAS  Google Scholar 

  67. Van Wesenbeeck E, Cleiren E, Gram J, Beals R, Benichou O, Scopelliti D, et al. Six novel missense mutations in the LDL receptor-related protein5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72:763–71

    Article  PubMed  Google Scholar 

  68. Streeten EA, Morton H, McBride DJ. Osteoporosis pseudoglioma syndrome: 3 siblings with a novel LRP5 mutation. J Bone Miner Res 2003;18 Suppl 2:S35

    Google Scholar 

  69. Rickels MR, Zhang X, Mumm S, Whyte MP. Skeletal disease accompanying high bone mass and novel LRP5 mutaiton. ASBMR meeting on advances in skeletal anabolic ageants for the treatment of osteoporosis. Abstract T6, 2004

  70. Whyte M, Reinus W, Mumm S. High-bone-mass disease and LRP5. N Engl J Med 2004;350:2096–8

    Article  PubMed  CAS  Google Scholar 

  71. Rickels MR, Zhang X, Mumm S, Whyte M. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J Bone Miner Res 2005;20:878–85

    Article  PubMed  CAS  Google Scholar 

  72. Streeten EA, Puffenberger E, Morton H, McBride D. Osteoporosis pseudoglioma syndrome: 4 siblings with a compound heterozygote LRP5 mutation. J Bone Miner Res 2004;19 Suppl 1:S182

    Google Scholar 

  73. Jin LY, Lau HHL, Smith DK, Lau KS, Cheung PT, Kwan EYW, et al. A family with osteoporosis-pseudoglioma syndrome (OPG) due to compound heterozygous mutation of the LRP5 gene. J Bone Miner Res 2004;19 Suppl 1:S129

    Google Scholar 

  74. Tomes C, Bottomley H, Jackson R, Towns K, Scott S, Mackey D, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 2004;74:721–30

    Article  Google Scholar 

  75. Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004;75:878–84

    Article  PubMed  CAS  Google Scholar 

  76. Choudhury U, Vernejoul MC, Deutsch S, Chevalley T, Bonjour JP, Antonarakis BE, et al. Genetic variation in LDL receptor related protein 5 (LRP5) is a major risk factor for male osteoporosis: results from a cross-sectional, longitudinal and case control study. J Bone Miner Res 2003

  77. Ferrari S, Deutsch S, Choudhury U, Chevalley T, Bonjour J, Dermitzakis E, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5(LRP5) gene are associated with variation in vertebral bone mass vertebral bone size, and stature in whites. Am J Hum Genet 2004;74:866–75

    Article  PubMed  CAS  Google Scholar 

  78. Koh JM, Jung MH, Hong JS, Park HJ, Chang JS, Shin HD, et al. Association between bone mineral density and LDL receptor-related protein 5 gene polymorphisms in young Korean men. J Korean Med Sci 2004;19:407–12

    Article  PubMed  CAS  Google Scholar 

  79. Mizuguchi T, Furuta I, Watanbe Y, Tsukamoto K, Tomita H, Tsujihata M, et al. LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 2004;49:80–6

    Article  PubMed  CAS  Google Scholar 

  80. Okubo M, Horinishi A, Kim DH, Yamamoto TT, Murase T. Seven novel sequence variants in the human low density lipoprotein receptor related protein 5 (LRP5) gene. Hum Mutat 2002;19:186–8

    Article  PubMed  CAS  Google Scholar 

  81. Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, et al. Influence of LRP5 polymorphisms on normal variation in BMD. JBMR 2004;19:1619–27

    Article  CAS  Google Scholar 

  82. Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005;20:783–9

    Article  PubMed  CAS  Google Scholar 

  83. Bollerslev J, Wilson SG, Dick IM, Islam FM, Ueland T, Palmer L, et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005;36:599–606

    Article  PubMed  CAS  Google Scholar 

  84. Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, et al. Contribution of the LRP5 gene to normal variation in peak bone BMD in women. J Bone Miner Res 2005;20:75–80

    Article  PubMed  CAS  Google Scholar 

  85. Ai M, Heeger S, Bartels CF, Schelling DK, Group atO-PC. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 2005;77:741–53

    Article  PubMed  CAS  Google Scholar 

  86. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DA, et al. Cbfa 1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002;157:303–14

    Article  PubMed  CAS  Google Scholar 

  87. Hoang BH, Kubo T, Healey JH, Sowers R, Mazza BA, Yang R, et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 2004;109:106–11

    Article  PubMed  CAS  Google Scholar 

  88. Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res 2004;19:2033–40

    Article  PubMed  CAS  Google Scholar 

  89. Johnson ML, Picconi JL, Recker RR. The gene for high bone mass. Endocrinologist 2002;12:445–53

    Google Scholar 

  90. Sawakami K, Robling AG, Pitner ND, Warden SJ, Li J, Warman ML, et al. Site-specific osteopenia and decreased mechanoreactivity in Lrp5-mutant mice. J Bone Miner Res 2004;19 Suppl 1:S38 (Abstract 1149)

    Google Scholar 

  91. Cullen DM, Akhter MP, Mace D, Johnson ML, Babij P, Recker RR. Bone sensitivity to mechanical loads with the Lrp5 HBM mutation. J Bone Miner Res 2002;17 Suppl 1:S332

    Google Scholar 

  92. Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki G, et al. Bone biomechanical properties in Lrp5 mutant mice. Bone 2004;35:162–9

    Article  PubMed  CAS  Google Scholar 

  93. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 2005;102:3324–9

    Article  PubMed  CAS  Google Scholar 

  94. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, et al. LDL-receptor-related protein 6 is a receptor for dickkopf proteins. Nature 2001;411:321–5

    Article  PubMed  CAS  Google Scholar 

  95. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/B-catenin signalling. Nature 2002;417:664–7

    Article  PubMed  CAS  Google Scholar 

  96. van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowik CW. SOST/sclerostin, an osteocyte-derived negative modulator of bone formation. Cytokine Growth Factor Res 2005;16:319–27

    Article  PubMed  CAS  Google Scholar 

  97. Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, et al. Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 2003;130:4295–305

    Article  PubMed  CAS  Google Scholar 

  98. Brunkow ME, Gardner JC, Van-Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 2001;68:577–89

    Article  PubMed  CAS  Google Scholar 

  99. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the defiiency of a novel secreted protein. Hum Mol Genet 2001; 10:537–43

    Article  PubMed  CAS  Google Scholar 

  100. Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 2005;102:17406–11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Johnson.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11154-007-9036-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.L., Rajamannan, N. Diseases of Wnt signaling. Rev Endocr Metab Disord 7, 41–49 (2006). https://doi.org/10.1007/s11154-006-9003-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-006-9003-3

Keywords