Skip to main content
Log in

Comprehensive Characterization of Relationship Between Higher-Order Structure and FcRn Binding Affinity of Stress-Exposed Monoclonal Antibodies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In biopharmaceutical development, information regarding higher-order structure (HOS) is important to verify quality and characterize protein derivatives. In this study, we aimed to characterize the association between HOS and pharmacokinetic property of a stress-exposed monoclonal antibody (mAb).

Methods

Purity, primary structure, thermal stability, and HOS were evaluated for mAbs exposed to heat, photo-irradiation, and chemical oxidation. To investigate conformation of stress-exposed mAbs, hydrogen/deuterium exchange coupled with mass spectrometry (HDX–MS) was utilized.

Results

No distinct difference in secondary or tertiary structure between stress-exposed and non-stressed samples was found by conventional spectroscopic techniques. In binding activity with the neonatal Fc receptor (FcRn), however, a marked decline was observed for force-oxidized mAb and a slight decline was observed for heat- and photodegraded mAbs. Using differential scanning calorimetry, a change in thermal stability was observed in the CH2 domain for all the stress-exposed samples. Using HDX–MS analyses, individual regions with altered conformation could be identified for heat-degraded and force-oxidized samples.

Conclusions

These findings indicate that comprehensive study is important for detecting conformational changes and helpful for predicting biophysical property, and that the evaluation of HOS using several analytical techniques is indispensable for confirming biopharmaceutical quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

DSC:

Differential scanning calorimetry

FT-IR:

Fourier-transform infrared (FT-IR)

HDX-MS:

Hydrogen/deuterium exchange coupled with mass spectrometry

HOS:

Higher-order structure

FcRn:

Neonatal Fc receptor

SEC:

Size-exclusion chromatography

SPR:

Surface plasmon resonance

References

  1. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  2. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  3. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs. 2015;7(1):9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cohen-Solal JF, Cassard L, Fridman W-H, Sautès-Fridman C. Fc γ receptors. Immunol Lett. 2004;92(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  5. Raghavan M, Bjorkman PJ. Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol. 1996;12:181–220.

    Article  CAS  PubMed  Google Scholar 

  6. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275–90.

    Article  CAS  PubMed  Google Scholar 

  7.  Albanesi M, Daëron M. The interactions of therapeutic antibodies with Fc receptors. Immunol Lett. 2012;143(1):20–7.

  8. Phuan P-W, Zhang H, Asavapanumas N, Leviten M, Rosenthal A, Tradtrantip L, et al. C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathol. 2013;125(6):829–40.

  9. Zhang A, Hu P, MacGregor P, Xue Y, Fan H, Suchecki P, et al. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem. 2014;86(7):3468–75.

    Article  CAS  PubMed  Google Scholar 

  10. Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fcγ receptors. Mol Immunol. 2009;46:1878–82.

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, et al. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48:860–6.

    Article  CAS  PubMed  Google Scholar 

  12. Gao X, Ji JA, Veeravalli K, Wang YJ, Zhang T, Mcgreevy W, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104(2):368–77.

    Article  CAS  PubMed  Google Scholar 

  13. Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. mAbs. 2014;6(5):1229–42.

    Article  PubMed  PubMed Central  Google Scholar 

  14. FDA. Guidance for industry quality considerations in demonstrating biosimilarity of a therapeutic protein product to a reference product. 2015.

  15. Houde D, Arndt J, Domeier W, Berkowitz S, Engen JR. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2009;81:2644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, et al. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2011;83:7129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Obungu VH, Gelfanova V, Rathnachalam R, Bailey A, Sloan-Lancaster J, Huang L. Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling. Biochemistry. 2009;48:7251–60.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ. Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res. 2012;29:236–50.

    Article  PubMed  Google Scholar 

  19. Iacob RE, Bou-Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D. Investigating monoclonal antibody aggregation using a combination of H/DX-MS and other biophysical measurement. J Pharm Sci. 2013;102:4315–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsuchida D, Yamazaki K, Akashi S. Characterization of stress-exposed granulocyte colony stimulating factor using ELISA and hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2014;25(10):1747–54.

    Article  CAS  PubMed  Google Scholar 

  21. ICH. ICH harmonised tripartite guideline, stability testing: photostability testing of new drug substances and products. 1996.

  22. Glasoe PK, Long FA. Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem. 1960;64:188–9.

    Article  CAS  Google Scholar 

  23. Connelly GP, Bai Y, Jeng MF, Englander SW. Isotope effects in peptide group hydrogen exchange. Proteins. 1993;17:87–92.

    Article  CAS  PubMed  Google Scholar 

  24. Walters BT, Ricciuti A, Mayne L, Englander SW. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment. J Am Soc Mass Spectrom. 2012;23:2132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wales TE, Engen JR. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev. 2006;25:158–70.

    Article  CAS  PubMed  Google Scholar 

  26. Cordoba AJ, Shyong B-J, Breen D, Harris RJ. Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B. 2005;818:115–21.

    Article  CAS  Google Scholar 

  27. Sharov VS, Ferrington DA, Squier TC, Schöneich C. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett. 1999;455(3):247–50.

    Article  CAS  PubMed  Google Scholar 

  28. Khor HK, Jacoby ME, Squier TC, Chu GC, Chelius D. Identification of methionine sulfoxide diastereomers in immunoglobulin gamma antibodies using methionine sulfoxide reductase enzymes. mAbs. 2010;2(3):299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Costantino HR, Andya JD, Shire SJ, Hsu CC. Fourier-transform infrared spectroscopic analysis of the secondary structure of recombinant humanized immunoglobulin G. J Pharm Sci. 1997;3:121–8.

    CAS  Google Scholar 

  30. Maury M, Murphy K, Kumar S, Mauerer A, Lee G. Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunogloblin G. Eur J Pharm Biopharm. 2005;59:251–61.

    Article  CAS  PubMed  Google Scholar 

  31. Strickland EH. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974;2(1):113–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bosch JP, Geronemus R, Glabman S, Lysaght M, Kahn T, von Albertini B. High flux hemofiltration. Artif Organs. 1978;2(4):339–42.

    Article  CAS  PubMed  Google Scholar 

  33. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem. 2001;276(9):6591–604.

    Article  CAS  PubMed  Google Scholar 

  34. Vermeer AWP, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78(1):394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garber E, Demarest SJ. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun. 2007;355(3):751–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge partial support for this work from a grant for academic research from Yokohama City University (to S.A.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Tsuchida or Satoko Akashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchida, D., Yamazaki, K. & Akashi, S. Comprehensive Characterization of Relationship Between Higher-Order Structure and FcRn Binding Affinity of Stress-Exposed Monoclonal Antibodies. Pharm Res 33, 994–1002 (2016). https://doi.org/10.1007/s11095-015-1845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1845-5

KEY WORDS

Navigation