Skip to main content

Advertisement

Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats

  • Research
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetes is a multifunctional chronic disease that affects both the central and/or peripheral nervous systems. This study assessed whether nicotinamide (NAm) or conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) could be potential neuroprotective agents against type 1 diabetes (T1D)-induced nervous system impairments in rats. After six weeks of T1D, induced by streptozotocin, nonlinear male Wistar rats were treated for two weeks with NAm (100 mg/kg, i. p.) or N-GABA (55 mg/kg, i. p.). Expression levels of myelin basic protein (MBP) were analyzed by immunoblotting. Polyol pathway parameters of the sciatic nerves were assessed spectrophotometrically, and their structure was examined histologically. NAm had no effect on blood glucose or body weight in T1D, while N-GABA reduced glucose by 1.5-fold. N-GABA also increased MBP expression by 1.48-fold, enhancing neuronal myelination, while NAm showed no such effect. Activation of the polyol pathway was observed in the T1D sciatic nerves. Both compounds decreased sorbitol content and aldose reductase activity, thereby alleviating changes similar to primary degeneration in the sciatic nerves and preventing peripheral neuropathy development. These results demonstrate that NAm and, more notably, N-GABA may exert neuroprotective effects against T1D-induced nervous system impairments by increasing MBP expression levels, improving myelination processes in the brain, inhibiting the polyol pathway, and partially restoring morphometric parameters in the sciatic nerves. This suggests their potential therapeutic efficacy as promising agents for the prevention of T1D-induced nervous system alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

BBB:

Blood-Brain Barrier

BNB:

Blood-Nerve Barrier

CNS:

Central Nervous System

DPN:

Diabetic Peripheral Neuropathy

GABA:

Gamma-Aminobutyric Acid

GFAP:

Glial Fibrillary Acidic Protein

i.p.:

Intraperitoneal

MBP:

Myelin Basic Protein

NAm:

Nicotinamide

NAD+ :

Nicotinamide Adenine Dinucleotide

NADP+ :

Nicotinamide Adenine Dinucleotide Phosphate

NADH:

Nicotinamide Adenine Dinucleotide Hydrogen

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate Hydrogen

N-GABA:

Nicotinoyl-GABA

Nf-L:

Neurofilament Light Chain

PARP-1:

Poly-ADP-Ribose Polymerase-1

PNS:

Peripheral Nervous System

SD:

Standard Deviation

SIRT1:

NAD-dependent protein deacetylase sirtuin-1

SIRT2:

NAD-dependent protein deacetylase sirtuin-2

SEM:

Scanning Electron Microscopy

STZ:

Streptozotocin

T1D:

Type 1 Diabetes

T2D:

Type 2 Diabetes

References

  1. Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Popoviciu MS, Kaka N, Sethi Y, Patel N, Chopra H, Cavalu S (2023) Type 1 diabetes Mellitus and Autoimmune diseases: a critical review of the Association and the application of Personalized Medicine. J Pers Med 13(3):422. https://doi.org/10.3390/jpm13030422

    Article  PubMed  PubMed Central  Google Scholar 

  3. King A, Bowe J (2016) Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol 99:1–10. https://doi.org/10.1016/j.bcp.2015.08.108

    Article  CAS  PubMed  Google Scholar 

  4. Mezza T, Cinti F, Cefalo CMA, Pontecorvi A, Kulkarni RN, Giaccari A (2019) β-Cell fate in human insulin resistance and type 2 diabetes: a perspective on Islet plasticity. Diabetes 68(6):1121–1129. https://doi.org/10.2337/db18-0856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, Martin CL, White NH et al (2020) Risk factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and complications (DCCT/EDIC) study. Diabetes 69(5):1000–1010. https://doi.org/10.2337/db19-1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biessels GJ, Whitmer RA (2020) Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia 63:3–9. https://doi.org/10.1007/s00125-019-04977-9

    Article  PubMed  Google Scholar 

  7. Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan BC, Feldman EL (2022) Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurol 21(10):922–936. https://doi.org/10.1016/S1474-4422(22)00188-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D (2017) Diabetic Neuropathy: A position Statement by the American Diabetes Association. Diabetes Care 40(1):136–154. https://doi.org/10.2337/dc16-2042

    Article  CAS  PubMed  Google Scholar 

  9. Rastogi A, Goyal G, Kesavan R et al (2020) Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study: epidemiology of diabetic foot complications study. Diabetes Res Clin Pract 162:108113. https://doi.org/10.1016/j.diabres.2020.108113

    Article  PubMed  Google Scholar 

  10. Kuchmerovska T, Shymanskyy I, Donchenko G, Kuchmerovskyy M, Pakirbaieva L, Klimenko A (2004) Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy. J Diabetes Complications 18(4):198–204. https://doi.org/10.1016/S1056-8727(03)00039-4

    Article  PubMed  Google Scholar 

  11. Guzyk M, Dyakun K, Yanytska O, Pryvrotska I, Krynytska I, Pishel’ I, Kuchmerovska T (2017) Inhibitors of poly(adp-ribose)polymerase-1 as agents providing correction of brain dysfunctions induced by experimental diabetes. Neurophysiology 49(3):183–193. https://doi.org/10.1007/s11062-017-9672-4

    Article  CAS  Google Scholar 

  12. Guzyk M, Tykhonenko T, Dyakun K, Yanitska L, Pryvrotska I, Kuchmerovska T (2019) Altered sirtuins 1 and 2 expression in the brain of rats induced by experimental diabetes and the ways of its correction. Ukr Biochem J 91(1):21–29. https://doi.org/10.15407/ubj91.01.021

    Article  CAS  Google Scholar 

  13. Fricker RA, Green EL, Jenkins SI, Griffin SM (2018) The influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 11:1–11. https://doi.org/10.1177/1178646918776658

    Article  Google Scholar 

  14. Napolitano T, Avolio F, Vieira A, Ben-Othman N, Courtney M, Gjernes E, Hadzic B, Druelle N, Navarro Sanz S, Silvano S, Mansouri A, Collombat P (2017) GABA signaling stimulates α-cell-mediated β-like cell neogenesis. Commun Integr Biol 10(3):e1300215. https://doi.org/10.1080/19420889.2017.1300215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorenz-Guertin JM, Jacob TC (2018) GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 78(3):238–270. https://doi.org/10.1002/dneu.22536

    Article  CAS  PubMed  Google Scholar 

  16. Trikash I, Gumenyuk V, Kuchmerovska T (2015) Diabetes-Induced impairments of the exocytosis process and the Effect of Gabapentin: the link with cholesterol level in neuronal plasma membranes. Neurochem Res 40:723–732. https://doi.org/10.1007/s11064-015-1520-6

    Article  CAS  PubMed  Google Scholar 

  17. Drel V, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska T, Slusher B, Obrosova I (2011) Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic akita mice. Int J Mol Med 28(4):629–635. https://doi.org/10.3892/ijmm.2011.709

    Article  CAS  PubMed  Google Scholar 

  18. Guzyk M, Tykhomyrov A, Nedzvetsky V, Prischepa I, Grinenko T, Yanitska L, Kuchmerovska T (2016) Poly(ADP-ribose) polymerase-1 (parp-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats. Neurochem Res 41(10):2526–2537. https://doi.org/10.1007/s11064-016-1964-3

    Article  CAS  PubMed  Google Scholar 

  19. Tykhonenko Т, Guzyk M, Tykhomyrov A, Korsa V, Yanitska L, Kuchmerovska T (2022) Modulatory effects of vitamin B3 and its derivative on the levels of apoptotic and vascular regulators and cytoskeletal proteins in diabetic rat brain as signs of neuroprotection. Biochimica et Biophysica Acta (BBA) -. Gen Subj 1866(11):130207. https://doi.org/10.1016/j.bbagen.2022.130207

    Article  CAS  Google Scholar 

  20. Eftekharpour E, Fernyhough P (2022) Oxidative stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 diabetes. Antioxid Redox Signal 37(7–9):578–596. https://doi.org/10.1089/ars.2021.0152

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y (2020) Oxidative stress and diabetes: antioxidative strategies. Front Med 14(5):583–600. https://doi.org/10.1007/s11684-019-0729-1

    Article  PubMed  Google Scholar 

  22. Kaestner KH, Powers AC, Naji A, Consortium H, Atkinson MA (2019) NIH Initiative to improve understanding of the pancreas, islet, and autoimmunity in type 1 diabetes: the human pancreas analysis program (HPAP). Diabetes 68(7):1394–1402. https://doi.org/10.2337/db19-0058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akbari M, Hassan-Zadeh V (2018) Hyperglycemia affects the expression of inflammatory genes in Peripheral Blood mononuclear cells of patients with type 2 diabetes. Immunol Invest 47(7):654–665. https://doi.org/10.1080/08820139.2018.1480031

    Article  CAS  PubMed  Google Scholar 

  24. Traiffort E, Kassoussi A, Zahaf A, Laouarem Y (2020) Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Front Cell Neurosci 14:79. https://doi.org/10.3389/fncel.2020.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kıray H, Lindsay SL, Hosseinzadeh S, Barnett SC (2016) The multifaceted role of astrocytes in the regulation of myelination. Exp Neurol 283(Pt B 541–549. https://doi.org/10.1016/j.expneurol.2016.03.009

  26. Camargo N, Goudriaan A, van Deijk AF, Otte WM, Brouwers JF, Lodder H, Gutmann DH, Nave KA, Dijkhuizen RM, Mansvelder HD, Chrast R, Smit AB, Verheijen MHG (2017) Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol 15(5):e1002605. https://doi.org/10.1371/journal.pbio.1002605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Guan R, Pan L (2023) Mechanism of Schwann cells in diabetic peripheral neuropathy: a review. Medicine 102(1):e32653. https://doi.org/10.1097/MD.0000000000032653

    Article  PubMed  PubMed Central  Google Scholar 

  28. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL et al (2019) Diabetic neuropathy. Nat Rev Dis Primers 5(1):41. https://doi.org/10.1038/s41572-019-0092-1

    Article  PubMed  Google Scholar 

  29. Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S (2024) Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol 14:1265372. https://doi.org/10.3389/fendo.2023.1265372

    Article  Google Scholar 

  30. Cherian CM, Reeves HR, De Silva D, Tsao S, Marshall KE, Rideout EJ (2024) Consideration of sex as a biological variable in diabetes research across twenty years. Biol Sex Differ 15(19). https://doi.org/10.1186/s13293-024-00595-2

  31. Zucker I, Beery A (2010) Males still dominate animal studies. Nature 465(690). https://doi.org/10.1038/465690a

  32. Stoscheck C (1990) Quantitation of protein. Methods Enzymol 182:50–68. https://doi.org/10.1016/0076-6879(90)82008-p

    Article  CAS  PubMed  Google Scholar 

  33. Bergmeyer H (1965) Methods of enzymatic analysis, 2nd edn. Verlag Chemie, New York and London

    Google Scholar 

  34. Gumenyuk A, Rybalko S, Ryzha A, Savosko S, Labudzynskyi D, Levchuk N, Chaikovsky Y (2018) Nerve regeneration in conditions of HSV-Infection and an antiviral drug influence. Anat Rec 301(10):1734–1744. https://doi.org/10.1002/ar.23848

    Article  CAS  Google Scholar 

  35. Singh M, Kapoor A, Bhatnagar A (2021) Physiological and pathological roles of Aldose Reductase. Metabolites 11(10):655. https://doi.org/10.3390/metabo11100655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chato-Astrain J, García-García ÓD, Campos F, Sánchez-Porras D, Carriel V (2021) Basic nerve histology and histological analyses following peripheral nerve repair and regeneration. Peripheral Nerve Tissue Engineering and Regeneration Reference Series in Biomedical Engineering. Springer, Cham, pp 1–37. https://doi.org/10.1007/978-3-030-06217-0_14-1

    Book  Google Scholar 

  37. Gasperi V, Sibilano M, Savini I, Catani MV (2019) Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci 20(4):974. https://doi.org/10.3390/ijms20040974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fricker RA, Green EL, Jenkins SI, Griffin SM (2018) The influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 11:1178646918776658. https://doi.org/10.1177/1178646918776658

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fricker RA, Green EL, Jenkins SI, Griffin SM (2018) The influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 11. https://doi.org/10.1177/1178646918776658

  40. Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP (2021) The role of vitamins in neurodegenerative disease: an update. Biomedicines 9(10):1284. https://doi.org/10.3390/biomedicines9101284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takasawa S (2022) CD38-Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and pathophysiology. Int J Mol Sci 23(8):4306. https://doi.org/10.3390/ijms23084306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sears SM, Hewett SJ (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 246(9):1069–1083. https://doi.org/10.1177/1535370221989263

    Article  CAS  PubMed  Google Scholar 

  43. Korol SV, Jin Z, Jin Y, Bhandage AK, Tengholm A, Gandasi NR, Barg S, Espes D, Carlsson PO, Laver D, Birnir B (2018) Functional characterization of native, High-Affinity GABAA receptors in human pancreatic β cells. EBioMedicine 30:273–282. https://doi.org/10.1016/j.ebiom.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ben-Othman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, Navarro-Sanz S, Silvano S, Al-Hasani K, Pfeifer A, Lacas-Gervais S, Leuckx G, Marroquí L, Thévenet J, Madsen OD, Eizirik DL, Heimberg H, Kerr-Conte J, Pattou F, Mansouri A, Collombat P (2017) Long-term GABA administration induces alpha cell-mediated Beta-like cell Neogenesis. Cell 168(1–2):73–85E11. https://doi.org/10.1016/j.cell.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  45. Bhandage AK, Jin Z, Korol SV, Shen Q, Pei Y, Deng Q, Espes D, Carlsson PO, Kamali-Moghaddam M, Birni B (2018) GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4 + T cells and is immunosuppressive in type 1 diabetes. EBioMedicine 30:283–294. https://doi.org/10.1016/j.ebiom.2018.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dulin WE, Wyse BM (1969) Studies on the ability of compounds to block the diabetogenic activity of streptozotocin. Diabetes 18(7):459–466. https://doi.org/10.2337/diab.18.7.459

    Article  CAS  PubMed  Google Scholar 

  47. Wang KL, Tao M, Wei TJ, Wei R (2021) Pancreatic β cell regeneration induced by clinical and preclinical agents. World J Stem Cells 13(1):64–77. https://doi.org/10.4252/wjsc.v13.i1.64

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kister A, Kister I (2023) Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 10:1041961. https://doi.org/10.3389/fchem.2022.1041961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Köhler S, Winkler U, Hirrlinger J (2021) Heterogeneity of astrocytes in Grey and White Matter. Neurochem Res 46(1):3–14. https://doi.org/10.1007/s11064-019-02926-x

    Article  CAS  PubMed  Google Scholar 

  50. Tobore TO (2021) Oxidative/Nitroxidative stress and multiple sclerosis. J Mol Neurosci 71(3):506–514. https://doi.org/10.1007/s12031-020-01672-y

    Article  CAS  PubMed  Google Scholar 

  51. Ngo DH, Vo TS (2019) An updated review on Pharmaceutical properties of Gamma-Aminobutyric Acid. Molecules 24(15):2678. https://doi.org/10.3390/molecules24152678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reyes-Haro D, Cisneros-Mejorado A, Arellano RO (2021) Therapeutic potential of GABAergic Signaling in myelin plasticity and repair. Front Cell Dev Biol 9:662191. https://doi.org/10.3389/fcell.2021.662191

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yan LJ (2018) Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Anim Model Exp Med 1(1):7–13. https://doi.org/10.1002/ame2.12001

    Article  Google Scholar 

  54. Chang KC, Shieh B, Petrash JM (2019) Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact 302:46–52. https://doi.org/10.1016/j.cbi.2019.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hao W, Tashiro S, Hasegawa T et al (2015) Hyperglycemia promotes Schwann Cell de-differentiation and de-myelination via Sorbitol Accumulation and Igf1 protein down-regulation. J Biol Chem 290(28):17106–17115. https://doi.org/10.1074/jbc.M114.631291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inceoglu B, Bettaieb A, Trindade da Silva CA, Lee KS, Haj FG, Hammock BD (2015) Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain. Proc Natl Acad Sci 112(29):9082–9087. https://doi.org/10.1073/pnas.1510137112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rachana K, Manu M, Advirao G (2016) Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci Lett 629:110–115. https://doi.org/10.1016/j.neulet.2016.06.067

    Article  CAS  PubMed  Google Scholar 

  58. Lirk P, Verhamme C, Boeckh R, Stevens MF, ten Hoope W, Gerner P, Blumenthal S, de Girolami U, van Schaik IN, Hollmann MW, Picardi S (2015) Effects of early and late diabetic neuropathy on sciatic nerve block duration and neurotoxicity in zucker diabetic fatty rats. Br J Anaesth 114(2):319–326. https://doi.org/10.1093/bja/aeu270

    Article  CAS  PubMed  Google Scholar 

  59. Stavniichuk R, Drel VR, Shevalye H, Maksimchyk Y, Kuchmerovska TM, Nadler JL, Obrosova IG (2011) Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Exp Neurol 230(1):106–113. https://doi.org/10.1016/j.expneurol.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Palova D, Turic Csokova N, Markova K, Kontsekova E, Kovacech B, Zilkova M (2021) The engagement of microglia in tau-targeted immunotherapy in Alzheimer’s disease. Gen Physiol Biophys 40(6):463–478. https://doi.org/10.4149/gpb_2021029. PMID: 34897021

  61. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 1862(5):887–900. https://doi.org/10.1016/j.bbadis.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  62. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richner M, Ferreira N, Dudele A, Jensen TS, Vaegter CB, Goncalves NP (2018) Functional and structural changes of the blood-nerve-barrier in Diabetic Neuropathy. Front Neurosci 12:1038. https://doi.org/10.3389/fnins.2018.01038

    Article  PubMed  Google Scholar 

  64. Kuchmerovska T, Shymanskyy I, Chlopicki S, Klimenko A (2010) L-methylnicotinamide (MNA) in prevention of diabetes-associated brain disorders. Neurochem Int 56(2):221–228. https://doi.org/10.1016/j.neuint.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  65. Kuchmerovska TM, Dyakun KO, Guzyk MM, Yanytska LV, Pryvrotska IB (2019) Effects of a combined mitochondria-targeted treatment on the state of mitochondria and synaptic membranes from the brains of diabetic rats. Neurophysiology 51(4):234–247. https://doi.org/10.1007/s11062-019-09816-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the budget program of National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Contributions

T.K. wrote the main manuscript text and did conceptualization, methodology, reviewing & editing. T.T. prepared Fig. 1 and did investigation, methodology, visualization and data curation. S.S. prepared Fig. 2 and did methodology, visualization and data curation. L.Y. and I.P. did investigation, visualization and data curation. All authors helped to critically revise the intellectual content of the manuscript and approved the final submission.

Corresponding author

Correspondence to Tamara Kuchmerovska.

Ethics declarations

Ethical Approval

All animal experiments were carried out in accordance with the Directive 2010/63/ EU and approved by the Animal Care and Use Committee of Palladin Institute of Biochemistry, NAS of Ukraine.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchmerovska, T., Tykhonenko, T., Yanitska, L. et al. Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats. Neurochem Res 50, 1 (2025). https://doi.org/10.1007/s11064-024-04257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04257-y

Keywords