Skip to main content
Log in

Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular–Subventricular Zone

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular–subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/β-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

Celsr:

Cadherin EGF LAG seven-pass G-type receptor

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DAPI:

4′,6-Diamidino-2-phenylindole

DKK:

Dickkopf

Dvl:

Dishevelled

Fzd:

Frizzled

GSK3β:

Glycogen synthase kinase 3β

Hipk1:

Homeodomain-interacting protein kinase-1

JNK:

c-Jun N-terminal kinase

LEF:

Lymphoid enhancer binding factor

NPC:

Neural progenitor cell

NSC:

Neural stem cell

OB:

Olfactory bulb

OPC:

Oligodendrocyte progenitor cell

PCP:

Planar cell polarity

RMS:

Rostral migratory stream

SGZ:

Subgranular zone

TCF:

T cell transcription factor

TLX:

Tailless

Vangl2:

Van Gogh like-2

V-SVZ:

Ventricular–subventricular zone

WIP1:

Wild-type p53-induced phosphatase 1

References

  1. Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10(6):698–708. doi:10.1016/j.stem.2012.05.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  3. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179–193. doi:10.1038/nrn1867

    Article  PubMed  CAS  Google Scholar 

  4. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. doi:10.1146/annurev.neuro.28.051804.101459

    PubMed  Google Scholar 

  5. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  PubMed  CAS  Google Scholar 

  6. Kokovay E, Wang Y, Kusek G et al (2012) VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell 11(2):220–230. doi:10.1016/j.stem.2012.06.016

    Article  PubMed  CAS  Google Scholar 

  7. Mirzadeh Z, Merkle FT, Soriano-Navarro M et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278. doi:10.1016/j.stem.2008.07.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  PubMed  CAS  Google Scholar 

  9. Ponti G, Obernier K, Guinto C et al (2013) Cell cycle and lineage progression of neural progenitors in the ventricular–subventricular zones of adult mice. Proc Natl Acad Sci USA 110(11):E1045–E1054. doi:10.1073/pnas.1219563110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    Article  PubMed  CAS  Google Scholar 

  11. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189. doi:10.1016/0896-6273(93)90281-U

    Article  PubMed  CAS  Google Scholar 

  12. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. doi:10.1038/nm747

    Article  PubMed  CAS  Google Scholar 

  13. Kojima T, Hirota Y, Ema M et al (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28(3):545–554. doi:10.1002/stem.306

    PubMed  Google Scholar 

  14. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016. doi:10.1523/JNEUROSCI.4323-06.2006

    Article  PubMed  CAS  Google Scholar 

  15. Parent JM, Vexler ZS, Gong C et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813. doi:10.1002/ana.10393

    Article  PubMed  Google Scholar 

  16. Thored P, Arvidsson A, Cacci E et al (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24(3):739–747. doi:10.1634/stemcells.2005-0281

    Article  PubMed  CAS  Google Scholar 

  17. Yamashita T, Ninomiya M, Hernandez Acosta P et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26(24):6627–6636. doi:10.1523/JNEUROSCI.0149-06.2006

    Article  PubMed  CAS  Google Scholar 

  18. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438(7070):954–959. doi:10.1038/nature04481

    Article  PubMed  CAS  Google Scholar 

  19. Kaneko N, Sawamoto K (2009) Adult neurogenesis and its alteration under pathological conditions. Neurosci Res 63(3):155–164. doi:10.1016/j.neures.2008.12.001

    Article  PubMed  Google Scholar 

  20. Massouh M, Saghatelyan A (2010) De-routing neuronal precursors in the adult brain to sites of injury: role of the vasculature. Neuropharmacology 58(6):877–883. doi:10.1016/j.neuropharm.2009.12.021

    Article  PubMed  CAS  Google Scholar 

  21. Sawada M, Sawamoto K (2013) Mechanisms of neurogenesis in the normal and injured adult brain. Keio J Med 62(1):13–28

    Article  PubMed  CAS  Google Scholar 

  22. Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10(3):392–399

    Article  PubMed  CAS  Google Scholar 

  23. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86. doi:10.1038/nrn2755

    Article  PubMed  CAS  Google Scholar 

  24. Devenport D (2014) The cell biology of planar cell polarity. J Cell Biol 207(2):171–179. doi:10.1083/jcb.201408039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tissir F, Goffinet AM (2013) Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 14(8):525–535. doi:10.1038/nrn3525

    Article  PubMed  CAS  Google Scholar 

  26. Adachi K, Mirzadeh Z, Sakaguchi M et al (2007) Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25(11):2827–2836. doi:10.1634/stemcells.2007-0177

    Article  PubMed  CAS  Google Scholar 

  27. Azim K, Fischer B, Hurtado-Chong A et al (2014) Persistent Wnt/beta-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32(5):1301–1312. doi:10.1002/stem.1639

    Article  PubMed  CAS  Google Scholar 

  28. Marinaro C, Pannese M, Weinandy F et al (2012) Wnt signaling has opposing roles in the developing and the adult brain that are modulated by Hipk1. Cereb Cortex 22(10):2415–2427. doi:10.1093/cercor/bhr320

    Article  PubMed  Google Scholar 

  29. Piccin D, Morshead CM (2011) Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells 29(3):528–538. doi:10.1002/stem.589

    Article  PubMed  CAS  Google Scholar 

  30. Zhu Y, Demidov ON, Goh AM et al (2014) Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J Clin Invest 124(7):3263–3273. doi:10.1172/JCI73015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Azim K, Rivera A, Raineteau O, Butt AM (2014) GSK3beta regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-beta-catenin signaling. Glia 62(5):778–779. doi:10.1002/glia.22641

    Article  PubMed  Google Scholar 

  32. Yu JM, Kim JH, Song GS, Jung JS (2006) Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Mol Cell Biochem 288(1–2):17–28. doi:10.1007/s11010-005-9113-3

    Article  PubMed  CAS  Google Scholar 

  33. Qu Q, Sun G, Li W et al (2010) Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12(1):31–40. doi:10.1038/ncb2001 (sup pp 31–39)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ortega F, Gascon S, Masserdotti G et al (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15(6):602–613. doi:10.1038/ncb2736

    Article  PubMed  CAS  Google Scholar 

  35. Imura T, Wang X, Noda T et al (2010) Adenomatous polyposis coli is essential for both neuronal differentiation and maintenance of adult neural stem cells in subventricular zone and hippocampus. Stem Cells 28(11):2053–2064. doi:10.1002/stem.524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schwarz-Romond T, Asbrand C, Bakkers J et al (2002) The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev 16(16):2073–2084. doi:10.1101/gad.230402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. van Amerongen R, Nawijn MC, Lambooij JP et al (2010) Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 29(1):93–104. doi:10.1038/onc.2009.310

    Article  PubMed  CAS  Google Scholar 

  38. Ikeda M, Hirota Y, Sakaguchi M et al (2010) Expression and proliferation-promoting role of Diversin in the neuronally committed precursor cells migrating in the adult mouse brain. Stem Cells 28(11):2017–2026. doi:10.1002/stem.516

    Article  PubMed  CAS  Google Scholar 

  39. Hirota Y, Sawada M, Kida YS et al (2012) Roles of planar cell polarity signaling in maturation of neuronal precursor cells in the postnatal mouse olfactory bulb. Stem Cells 30(8):1726–1733. doi:10.1002/stem.1137

    Article  PubMed  CAS  Google Scholar 

  40. Pino D, Choe Y, Pleasure SJ (2011) Wnt5a controls neurite development in olfactory bulb interneurons. ASN Neuro 3(3):e00059. doi:10.1042/AN20100038

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sawamoto K, Wichterle H, Gonzalez-Perez O et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632. doi:10.1126/science.1119133

    Article  PubMed  CAS  Google Scholar 

  42. Mirzadeh Z, Han YG, Soriano-Navarro M et al (2010) Cilia organize ependymal planar polarity. J Neurosci 30(7):2600–2610. doi:10.1523/JNEUROSCI.3744-09.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hirota Y, Meunier A, Huang S et al (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137(18):3037–3046. doi:10.1242/dev.050120

    Article  PubMed  CAS  Google Scholar 

  44. Kubo A, Yuba-Kubo A, Tsukita S et al (2008) Sentan: a novel specific component of the apical structure of vertebrate motile cilia. Mol Biol Cell 19(12):5338–5346. doi:10.1091/mbc.E08-07-0691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Guirao B, Meunier A, Mortaud S et al (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12(4):341–350. doi:10.1038/ncb2040

    Article  PubMed  CAS  Google Scholar 

  46. Ohata S, Herranz-Pérez V, Nakatani J et al (2015) Mechanosensory genes Pkd1 and Pkd2 contribute to the planar polarization of brain ventricular epithelium. J Neurosci 35(31):11153–11168. doi:10.1523/JNEUROSCI.0686-15.2015

    Article  PubMed  CAS  Google Scholar 

  47. Ohata S, Nakatani J, Herranz-Perez V et al (2014) Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 83(3):558–571. doi:10.1016/j.neuron.2014.06.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boutin C, Labedan P, Dimidschstein J et al (2014) A dual role for planar cell polarity genes in ciliated cells. Proc Natl Acad Sci USA 111(30):E3129–E3138. doi:10.1073/pnas.1404988111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tissir F, Qu Y, Montcouquiol M et al (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13(6):700–707. doi:10.1038/nn.2555

    Article  PubMed  CAS  Google Scholar 

  50. Lei ZN, Zhang LM, Sun FY (2008) Beta-catenin siRNA inhibits ischemia-induced striatal neurogenesis in adult rat brain following a transient middle cerebral artery occlusion. Neurosci Lett 435(2):108–112. doi:10.1016/j.neulet.2008.02.031

    Article  PubMed  CAS  Google Scholar 

  51. Zhang RL, LeTourneau Y, Gregg SR et al (2007) Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci 27(12):3157–3162. doi:10.1523/JNEUROSCI.4969-06.2007

    Article  PubMed  CAS  Google Scholar 

  52. Shruster A, Ben-Zur T, Melamed E, Offen D (2012) Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS ONE 7(7):e40843. doi:10.1371/journal.pone.0040843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. L’Episcopo F, Tirolo C, Testa N et al (2013) Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3 K-Wnt/beta-catenin dysregulation. J Neurosci 33(4):1462–1485. doi:10.1523/JNEUROSCI.3206-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. L’Episcopo F, Tirolo C, Testa N et al (2012) Plasticity of subventricular zone neuroprogenitors in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease involves cross talk between inflammatory and Wnt/beta-catenin signaling pathways: functional consequences for neuroprotection and repair. J Neurosci 32(6):2062–2085. doi:10.1523/JNEUROSCI.5259-11.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Higginbotham H, Bielas S, Tanaka T, Gleeson JG (2004) Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res 13(2):155–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to all whose work we could not cite because of space limitation. We thank Dr. Naoko Kaneko for critical reading of the manuscript, Dr. Kazuhide Adachi, Dr. Makiko Ikeda, and all our collaborators for their contributions to original research, and members of Sawamoto laboratory for discussions. This work was supported by JSPS KAKENHI Grant Numbers 26250019, 26640046, 22122004, 15H01217, 15H01384 (to K.S.), and 26830014 (to M.S.), the Takeda Science Foundation (to K.S., and M.S.), and the Terumo Life Science Foundation (to K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Sawamoto.

Additional information

Yuki Hirota, Masato Sawada and Shih-hui Huang have contributed equally to this work.

Special Issue: 40th Year of Neurochemical Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirota, Y., Sawada, M., Huang, Sh. et al. Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular–Subventricular Zone. Neurochem Res 41, 222–230 (2016). https://doi.org/10.1007/s11064-015-1766-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1766-z

Keywords

Navigation