Skip to main content

Advertisement

Log in

Exploration of SOD3 from gene to therapeutic prospects: a brief review

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Superoxide dismutase 3 (SOD3) is a type of antioxidant enzyme, which plays an important role in converting superoxide anion into hydrogen peroxide through its extracellular activity. This enzyme has been widely studied and evaluated from various points of view, including maintaining cellular redox balance, protecting against oxidative damage, and enhancing overall cellular resilience. The current paper focuses on SOD3 expression from a functional perspective. In addition to a detailed examination of the gene and protein structure, we found ample evidence indicating that the expression level of SOD3 undergoes alterations in response to various transcription factors, signaling pathways, and diverse conditions. These fluctuations, by disrupting the homeostasis of SOD3, can serve as crucial indicators of the onset or exacerbation of specific diseases. In this regard, significant efforts have been dedicated in recent years to the treatment of diseases through the regulation of SOD3 expression. The ultimate goal of this review is to extensively highlight and demonstrate the immense potential of SOD3 as a therapeutic target, emphasizing its profound impact on health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. İnal ME, Kanbak G, Sunal E (2001) Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 305(1–2):75–80. https://doi.org/10.1016/S0009-8981(00)00422-8

    Article  PubMed  Google Scholar 

  2. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Islam MN et al (2022) Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr 62(26):7282–7300. https://doi.org/10.1080/10408398.2021.1913400

    Article  PubMed  Google Scholar 

  4. Eleutherio ECA, Magalhães RSS, de Araújo Brasil A, Neto JRM, de Holanda Paranhos L (2021) SOD1, more than just an antioxidant. Arch Biochem Biophys 697:108701. https://doi.org/10.1016/j.abb.2020.108701

    Article  CAS  PubMed  Google Scholar 

  5. Lewandowski Ł, Kepinska M, Milnerowicz H (2020) Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3. Int J Mol Sci 21(14):5069. https://doi.org/10.3390/ijms21145069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F (2021) Superoxide dismutase administration: a review of proposed human uses. Molecules 26(7):1844. https://doi.org/10.3390/molecules26071844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miao L, Clair DKS (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47(4):344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sah SK, Agrahari G, Kim TY (2020) Insights into superoxide dismutase 3 in regulating biological and functional properties of mesenchymal stem cells. Cell Biosci 10(1):1–12. https://doi.org/10.1186/s13578-020-00386-3

    Article  CAS  Google Scholar 

  9. Tak LJ et al (2021) Superoxide dismutase 3-transduced mesenchymal stem cells preserve epithelial tight junction barrier in murine colitis and attenuate inflammatory damage in epithelial organoids. Int J Mol Sci 22(12):6431. https://doi.org/10.3390/ijms22126431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang JW et al (2020) Extracellular vesicles from sod3-transduced stem cells exhibit improved immunomodulatory abilities in the murine dermatitis model. Antioxidants 9(11):1165. https://doi.org/10.3390/antiox9111165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castellone MD et al (2014) Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal 21(10):1460–1474. https://doi.org/10.1089/ars.2013.5475

    Article  CAS  PubMed  Google Scholar 

  12. Parascandolo A, Laukkanen MO (2021) SOD3 is a non-mutagenic growth regulator affecting cell migration and proliferation signal transduction. Antioxidants 10(5):635. https://doi.org/10.3390/antiox10050635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kleniewska P, Hoffmann A, Pniewska E, Pawliczak R (2016) The influence of probiotic Lactobacillus casei in combination with prebiotic inulin on the antioxidant capacity of human plasma. Oxid Med Cell Longev 2016. https://doi.org/10.1155/2016/1340903

  14. Jung O, Marklund SL, Xia N, Busse R, Brandes RP (2007) Inactivation of extracellular superoxide dismutase contributes to the development of high-volume hypertension. Arterioscler Thromb Vasc Biol 27(3):470–477. https://doi.org/10.1161/01.ATV.0000254823.15843.1f

    Article  CAS  PubMed  Google Scholar 

  15. Laatikainen LE, Incoronato M, Castellone MD, Laurila JP, Santoro M, Laukkanen MO (2011) SOD3 decreases ischemic injury derived apoptosis through phosphorylation of Erk1/2, akt, and FoxO3a. PLoS ONE 6(8):e24456. https://doi.org/10.1371/journal.pone.0024456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang X et al (2024) Oxidative stress is involved in immunosuppression and macrophage regulation in glioblastoma. Clin Immunol 258:109802. https://doi.org/10.1016/j.clim.2023.109802

    Article  CAS  PubMed  Google Scholar 

  17. Antonyuk SV, Strange RW, Marklund SL, Hasnain SS (2009) The structure of human extracellular copper–zinc superoxide dismutase at 1.7 Å resolution: insights into heparin and collagen binding. J Mol Biol 388(2):310–326. https://doi.org/10.1016/j.jmb.2009.03.026

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y et al (2019) A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun 10(1):1914. https://doi.org/10.1038/s41467-019-09839-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu K et al (2024) SOD3 regulates FLT1 to affect bone metabolism by promoting osteogenesis and inhibiting adipogenesis through PI3K/AKT and MAPK pathways. Free Radic Biol Med 212:65–79. https://doi.org/10.1016/j.freeradbiomed.2023.12.021

    Article  CAS  PubMed  Google Scholar 

  20. Moher D et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1–9. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sørheim IC et al (2010) Polymorphisms in the superoxide dismutase-3 gene are associated with emphysema in COPD. COPD: J Chronic Obstr Pulm Dis 7(4):262–268. https://doi.org/10.3109/15412555.2010.496821

  22. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349. https://doi.org/10.1016/S0891-5849(02)00905-X

    Article  CAS  PubMed  Google Scholar 

  23. Folz RJ, Crapo JD (1994) Extracellular superoxide dismutase (SOD3): tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene. Genom 22(1):162–171. https://doi.org/10.1006/geno.1994.1357

    Article  CAS  Google Scholar 

  24. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35(3):236–256. https://doi.org/10.1016/S0891-5849(03)00275-2

    Article  CAS  PubMed  Google Scholar 

  25. Pereira GRC, Da Silva ANR, Do Nascimento SS, De Mesquita JF (2019) In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. J Cell Biochem 120(3):3583–3598. https://doi.org/10.1002/jcb.27636

    Article  CAS  PubMed  Google Scholar 

  26. Kwon MJ, Kim B, Lee YS, Kim TY (2012) Role of superoxide dismutase 3 in skin inflammation. J Dermatol Sci 67(2):81–87. https://doi.org/10.1016/j.jdermsci.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  27. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q (2023) The applications and mechanisms of superoxide dismutase in medicine, food, and cosmetics. Antioxidants 12(9):1675. https://doi.org/10.3390/antiox12091675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petersen SV et al (2005) The high concentration of Arg213→ gly extracellular superoxide dismutase (EC-SOD) in plasma is caused by a reduction of both heparin and collagen affinities. Biochem J 385(2):427–432. https://doi.org/10.1042/BJ20041218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobylecki CJ, Afzal S, Nordestgaard BG (2016) Does SOD3 R213G homozygosity influence morbidity, mortality, and lung function in the general population? Antioxid Redox Signal 24(15):884–891. https://doi.org/10.1089/ars.2016.6629

    Article  CAS  PubMed  Google Scholar 

  31. Zachariae ED, Hu L, Petersen SV (2020) Extracellular superoxide dismutase (SOD3): an antioxidant or prooxidant in the extracellular space? Oxidative Stress 183:215. https://doi.org/10.1016/B978-0-12-818606-0.00012-2

    Article  Google Scholar 

  32. Enghild JJ, Thøgersen IB, Oury TD, Valnickova Z, Højrup P, Crapo JD (1999) The heparin-binding domain of extracellular superoxide dismutase is proteolytically processed intracellularly during biosynthesis. J Biol Chem 274(21):14818–14822. https://doi.org/10.1074/jbc.274.21.14818

    Article  CAS  PubMed  Google Scholar 

  33. Gao D et al (2020) SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation, and insulin resistance. Antioxid Redox Signal 32(3):193–212. https://doi.org/10.1089/ars.2018.7628

    Article  CAS  PubMed  Google Scholar 

  34. Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG (1998) Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest 101(10):2101–2111. https://doi.org/10.1172/JCI2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landmesser U, Merten R, Spiekermann S, Büttner K, Drexler H, Hornig B (2000) Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 101(19):2264–2270. https://doi.org/10.1161/01.CIR.101.19.2264

    Article  CAS  PubMed  Google Scholar 

  36. Lee MJ et al (2021) Extracellular superoxide dismutase prevents skin aging by promoting collagen production through the activation of AMPK and Nrf2/HO-1 cascades. J Invest Dermatol 141(10):2344–2353. https://doi.org/10.1016/j.jid.2021.02.757

    Article  CAS  PubMed  Google Scholar 

  37. Gao F, Kinnula VL, Myllärniemi M, Oury TD (2008) Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid Redox Signal 10(2):343–354. https://doi.org/10.1089/ars.2007.1908

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y et al (2022) The effect of extracellular superoxide dismutase (SOD3) gene in lung cancer. Front Oncol 12:722646. https://doi.org/10.3389/fonc.2022.722646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scott JL et al (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 69(8):1502–1510. https://doi.org/10.1136/ard.2009.119966

    Article  CAS  PubMed  Google Scholar 

  40. Wadley AJ et al (2019) Characterization of extracellular redox enzyme concentrations in response to exercise in humans. J Appl Physiol 127(3):858–866. https://doi.org/10.1152/japplphysiol.00340.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao H et al (2013) SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS ONE 8(9):e73634. https://doi.org/10.1371/journal.pone.0073634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laatikainen LE et al (2010) Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr-Relat Cancer 17(3):785. https://doi.org/10.1677/ERC-10-0021

    Article  CAS  PubMed  Google Scholar 

  43. Kruidenier L et al (2003) Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J Pathol: J Pathol Soc GB IRE 201(1):7–16. https://doi.org/10.1002/path.1407

    Article  CAS  Google Scholar 

  44. Fujita H et al (2009) Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20(6):1303–1313. https://doi.org/10.1681/ASN.2008080844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng YK, Hwang GY, Lin CD, Tsai MH, Tsai SW, Chang WC (2006) Altered expression profile of superoxide dismutase isoforms in nasal polyps from nonallergic patients. Laryngoscope 116(3):417–422. https://doi.org/10.1097/01.MLG.0000199738.37455.55

    Article  CAS  PubMed  Google Scholar 

  46. Itoh S et al (2009) Novel mechanism for regulation of extracellular SOD transcription and activity by copper: role of antioxidant-1. Free Radic Biol Med 46(1):95–104. https://doi.org/10.1016/j.freeradbiomed.2008.09.039

    Article  CAS  PubMed  Google Scholar 

  47. Kamiya T, Takeuchi K, Fukudome S, Hara H, Adachi T (2018) Copper chaperone antioxidant-1, Atox-1, is involved in the induction of SOD3 in THP-1 cells. Biometals 31:61–68. https://doi.org/10.1007/s10534-017-0067-1

    Article  CAS  PubMed  Google Scholar 

  48. Laukkanen MO (2016) Extracellular superoxide dismutase: growth promoter or tumor suppressor? Oxid Med Cell Longev. https://doi.org/10.1155/2016/3612589

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kamiya T (2022) Copper biology in health and disease: copper in the tumor microenvironment and tumor metastasis. J Clin Biochem Nutr 71(1):22. https://doi.org/10.3164/jcbn.22-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nguyen NH, Tran GB, Nguyen CT (2020) Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J Mol Med 98(1):59–69. https://doi.org/10.1007/s00109-019-01845-2

    Article  CAS  PubMed  Google Scholar 

  51. Strålin P, Marklund SL (2000) Multiple cytokines regulate the expression of extracellular superoxide dismutase in human vascular smooth muscle cells. Atherosclerosis 151(2):433–441. https://doi.org/10.1016/S0021-9150(99)00427-X

    Article  PubMed  Google Scholar 

  52. Hu L, Zachariae ED, Larsen UG, Vilhardt F, Petersen SV (2019) The dynamic uptake and release of SOD3 from intracellular stores in macrophages modulates the inflammatory response. Redox Biol 26:101268. https://doi.org/10.1016/j.redox.2019.101268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ganguly K et al (2009) Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics 37(3):260–267. https://doi.org/10.1152/physiolgenomics.90363.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sherlock LG et al (2018) Redistribution of extracellular superoxide dismutase causes neonatal pulmonary vascular remodeling and PH but protects against experimental bronchopulmonary dysplasia. Antioxidants 7(3):42. https://doi.org/10.3390/antiox7030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartney JM et al (2014) A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution. Circ Cardiovasc Genet 7(5):659–666. https://doi.org/10.1161/CIRCGENETICS.113.000504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Agrahari G, Sah SK, Bang CH, Kim YH, Kim TY (2021) Superoxide dismutase 3 controls the activation and differentiation of CD4 + T cells. Front Immunol 12:628117. https://doi.org/10.3389/fimmu.2021.628117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen F et al (2023) Potential role of superoxide dismutase 3 (sod3) in resistance to influenza A virus infection. Antioxidants 12(2):354. https://doi.org/10.3390/antiox12020354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis SM, Pennypacker KR (2017) Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 107:23–32. https://doi.org/10.1016/j.neuint.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  59. Sah SK, Agrahari G, Nguyen CT, Kim YS, Kang KS, Kim TY (2018) Enhanced therapeutic effects of human mesenchymal stem cells transduced with superoxide dismutase 3 in a murine atopic dermatitis-like skin inflammation model. Allergy 73(12):2364–2376. https://doi.org/10.1111/all.13594

    Article  CAS  PubMed  Google Scholar 

  60. Jindarojanakul P et al (2023) Changes in superoxide dismutase 3 (SOD3) expression in periodontal tissue during orthodontic tooth movement of rat molars and the effect of SOD3 on in vitro hypoxia-exposed rat periodontal ligament cells. Eur J Orthod 45(4):430–437. https://doi.org/10.1093/ejo/cjad005

    Article  PubMed  Google Scholar 

  61. Shi Y et al (2019) Superoxide dismutase 3 facilitates the chondrogenesis of bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 509(4):983–987. https://doi.org/10.1016/j.bbrc.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  62. Mira E et al (2018) SOD3 improves the tumor response to chemotherapy by stabilizing endothelial HIF-2α. Nat Commun 9(1):575. https://doi.org/10.1038/s41467-018-03079-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Mr. Mohammad Yahya Karimi for proposing this project and for his invaluable assistance in improving the article’s figure. We also extend our appreciation to Mr. Nima Mohseni for his dedicated efforts in data collection.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Amin Kalmari contributed to the study conception, design and writing. Abasalt Hosseinzadeh Colagar provided supervision and critical revisions.

Corresponding author

Correspondence to Abasalt Hosseinzadeh Colagar.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmari, A., Colagar, A.H. Exploration of SOD3 from gene to therapeutic prospects: a brief review. Mol Biol Rep 51, 980 (2024). https://doi.org/10.1007/s11033-024-09919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09919-2

Keywords

Navigation