Skip to main content

Advertisement

Log in

Cellular and molecular mechanisms of cell damage and cell death in ischemia–reperfusion injury in organ transplantation

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2024

This article has been updated

Abstract

Ischemia–reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells’ antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  1. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17(11):1391–1401

    CAS  PubMed  Google Scholar 

  2. Fei Q, Liu J, Qiao L, Zhang M, Xia H, Lu D, Wu D, Wang J, Li R, Li J, Yang F, Liu D, Xie B, Hui W, Qian B (2023) Mst1 attenuates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice through regulating Keap1/Nrf2 axis. Biochem Biophys Res Commun 644:140–148

    CAS  PubMed  Google Scholar 

  3. Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P, Feng Y, Jian W (2021) Myocardial ischemia-reperfusion injury: therapeutics from a mitochondria-centric perspective. Cardiology 146(6):781–792

    CAS  PubMed  Google Scholar 

  4. Christie JD, Kotloff RM, Ahya VN, Tino G, Pochettino A, Gaughan C, DeMissie E, Kimmel SE (2005) The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med 171(11):1312–1316

    PubMed  PubMed Central  Google Scholar 

  5. Fiser SM, Tribble CG, Long SM, Kaza AK, Kern JA, Jones DR, Robbins MK, Kron IL (2002) Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg 73(4):1041–1048

    PubMed  Google Scholar 

  6. Wilkes DS (2012) Autoantibody formation in human and rat studies of chronic rejection and primary graft dysfunction. Semin Immunol 24(2):131–135

    CAS  PubMed  Google Scholar 

  7. Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204(Pt 18):3171–3181

    CAS  PubMed  Google Scholar 

  8. Imahashi K, Mraiche F, Steenbergen C, Murphy E, Fliegel L (2007) Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium. Am J Physiol Heart Circ Physiol 292(5):H2237–H2247

    CAS  PubMed  Google Scholar 

  9. Guo HC, Guo F, Zhang LN, Zhang R, Chen Q, Li JX, Yin J, Wang YL (2011) Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury. Am J Physiol Heart Circ Physiol 300(6):H2280–H2287

    CAS  PubMed  Google Scholar 

  10. Chen L, Lu XY, Li J, Fu JD, Zhou ZN, Yang HT (2006) Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. Am J Physiol Cell Physiol 290(4):C1221–C1229

    CAS  PubMed  Google Scholar 

  11. Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X (2022) Cerebral edema after ischemic stroke: pathophysiology and underlying mechanisms. Front Neurosci 16:988283

    PubMed  PubMed Central  Google Scholar 

  12. Nauta RJ, Tsimoyiannis E, Uribe M, Walsh DB, Miller D, Butterfield A (1991) The role of calcium ions and calcium channel entry blockers in experimental ischemia-reperfusion-induced liver injury. Ann Surg 213(2):137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological, and mitochondrial studies. J Clin Invest 74(5):1830–41

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D et al (2003) Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury. Transplantation 76(1):50–54

    CAS  PubMed  Google Scholar 

  15. McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S (2004) Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 286(5):H1923–H1935

    CAS  PubMed  Google Scholar 

  16. Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44(3):205–221

    CAS  PubMed  Google Scholar 

  17. Guicciardi ME, Gores GJ (2013) Complete lysosomal disruption: a route to necrosis, not to the inflammasome. Cell Cycle 12(13):1995

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jurisic V, Radenkovic S, Konjevic G (2015) The Actual role of ldh as tumor marker, biochemical and clinical aspects. Adv Exp Med Biol 867:115–124

    CAS  PubMed  Google Scholar 

  19. Debout A, Foucher Y, Trébern-Launay K, Legendre C, Kreis H, Mourad G, Garrigue V et al (2015) Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int 87(2):343–349

    PubMed  Google Scholar 

  20. Kim H, Zhao J, Zhang Q, Wang Y, Lee D, Bai X, Turrell L, Chen M, Gao W, Keshavjee S, Liu M (2016) Δv1-1 reduces pulmonary ischemia reperfusion-induced lung injury by inhibiting necrosis and mitochondrial localization of PKCδ and p53. Am J Transplant 16(1):83–98

    CAS  PubMed  Google Scholar 

  21. Fischer S, Maclean AA, Liu M, Cardella JA, Slutsky AS, Suga M, Moreira JF, Keshavjee S (2000) Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med 162(5):1932–1939

    CAS  PubMed  Google Scholar 

  22. Yamane M, Liu M, Kaneda H, Uhlig S, Waddell TK, Keshavjee S (2005) Reperfusion-induced gene expression profiles in rat lung transplantation. Am J Transplant 5(9):2160–2169

    CAS  PubMed  Google Scholar 

  23. Oyaizu T, Fung SY, Shiozaki A, Guan Z, Zhang Q, dos Santos CC, Han B, Mura M, Keshavjee S, Liu M (2012) Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury. Intensive Care Med 38(5):894–905

    CAS  PubMed  Google Scholar 

  24. Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A (2018) Origin and consequences of necroinflammation. Physiol Rev 98(2):727–780

    CAS  PubMed  Google Scholar 

  25. Zhang X, Wu J, Liu Q, Li X, Li S, Chen J, Hong Z, Wu X, Zhao Y, Ren J (2020) mtDNA-STING pathway promotes necroptosis-dependent enterocyte injury in intestinal ischemia reperfusion. Cell Death Dis 11(12):1050

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao YJ, Ma YX, Huang LL, Zhang Z, Tan FY, Deng LL, Cao D, Zeng XJ, Yu GQ, Liao XH (2022) Augmenter of liver regeneration protects the kidney against ischemia-reperfusion injury by inhibiting necroptosis. Bioengineered 13(3):5152–5167

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H (2022) Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci 7(8):800–819

    PubMed  PubMed Central  Google Scholar 

  28. Huang LL, Liao XH, Sun H, Jiang X, Liu Q, Zhang L (2019) Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis. J Cell Mol Med 23(6):4153–4164

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kolachala VL, Lopez C, Shen M, Shayakhmetov D, Gupta NA (2021) Ischemia reperfusion injury induces pyroptosis and mediates injury in steatotic liver thorough Caspase 1 activation. Apoptosis 26(5–6):361–370

    CAS  PubMed  Google Scholar 

  30. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61:372–385

    CAS  PubMed  Google Scholar 

  31. Robichaux DJ, Harata M, Murphy E, Karch J (2023) Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol 174:47–55

    CAS  PubMed  Google Scholar 

  32. Javadov S, Kuznetsov A (2013) Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol 4:76

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bopassa JC, Michel P, Gateau-Roesch O, Ovize M, Ferrera R (2005) Low-pressure reperfusion alters mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 288(6):H2750–H2755

    CAS  PubMed  Google Scholar 

  35. Gan I, Jiang J, Lian D, Huang X, Fuhrmann B, Liu W, Haig A, Jevnikar AM, Zhang ZX (2019) Mitochondrial permeability regulates cardiac endothelial cell necroptosis and cardiac allograft rejection. Am J Transplant 19(3):686–698

    CAS  PubMed  Google Scholar 

  36. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F et al (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277:34793–34799

    CAS  PubMed  Google Scholar 

  38. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469

    CAS  PubMed  Google Scholar 

  39. Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366:79–94

    CAS  PubMed  Google Scholar 

  40. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    CAS  PubMed  Google Scholar 

  41. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Galluzzi L, Kepp O, Chan FK, Kroemer G (2017) Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 12:103–130

    CAS  PubMed  Google Scholar 

  43. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, Masters SL, Murphy JM, Schroder K, Vaux DL, Lawlor KE, Lindqvist LM, Vince JE (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA 114(6):E961–E969

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14(11):759–767

    CAS  PubMed  Google Scholar 

  45. Pavlosky A, Lau A, Su Y, Lian D, Huang X, Yin Z, Haig A, Jevnikar AM, Zhang ZX (2014) RIPK3-mediated necroptosis regulates cardiac allograft rejection. Am J Transplant 14(8):1778–1790

    CAS  PubMed  Google Scholar 

  46. Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar AM (2013) RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant 13(11):2805–2818

    CAS  PubMed  Google Scholar 

  47. Zhao H, Chen Q, Huang H, Suen KC, Alam A, Cui J, Ciechanowicz S, Ning J, Lu K, Takata M, Gu J, Ma D (2019) Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats. Br J Anaesth 123(4):519–530

    CAS  PubMed  Google Scholar 

  48. Zhao H, Ning J, Lemaire A, Koumpa FS, Sun JJ, Fung A, Gu J, Yi B, Lu K, Ma D (2015) Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int 87(4):738–748

    CAS  PubMed  Google Scholar 

  49. Dhillon N, Walsh L, Krüger B, Ward SC, Godbold JH, Radwan M et al (2010) A single nucleotide polymorphism of Toll-like receptor 4 identifies the risk of developing graft failure after liver transplantation. J Hepatol 53(1):67–72

    CAS  PubMed  Google Scholar 

  50. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dickson KB, Zhou J (2020) Role of reactive oxygen species and iron in host defense against infection. Front Biosci (Landmark Ed) 25(8):1600–1616

    CAS  PubMed  Google Scholar 

  54. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA et al (2017) Oxidized arachidonic and adrenic Pes navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90

    CAS  PubMed  Google Scholar 

  55. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37

    CAS  PubMed  Google Scholar 

  56. Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, Watanabe S et al (2020) Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis. Am J Transplant 20(6):1606–1618

    CAS  PubMed  Google Scholar 

  57. Seo MY, Lee SM (2002) Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol 36(1):72–77

    CAS  PubMed  Google Scholar 

  58. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 33(8):1037–1046

    CAS  PubMed  Google Scholar 

  59. Lv H, Shang P (2018) The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 10(7):899–916

    CAS  PubMed  Google Scholar 

  60. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191

    CAS  PubMed  Google Scholar 

  61. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Galaris D, Barbouti A, Korantzopoulos P (2006) Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des 12(23):2875–2890

    CAS  PubMed  Google Scholar 

  63. Veitch K, Maisin L, Hue L (1995) Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion. Am J Cardiol 76(6):25B-30B

    CAS  PubMed  Google Scholar 

  64. Guarnieri C, Muscari C (1993) Effect of trimetazidine on mitochondrial function and oxidative damage during reperfusion of ischemic hypertrophied rat myocardium. Pharmacology 46(6):324–331

    CAS  PubMed  Google Scholar 

  65. Dulundu E, Ozel Y, Topaloglu U, Sehirli O, Ercan F, Gedik N, Sener G (2007) Alpha-lipoic acid protects against hepatic ischemia-reperfusion injury in rats. Pharmacology 79(3):163–170

    CAS  PubMed  Google Scholar 

  66. Gondolesi GE, Lausada N, Schinella G, Semplici AM, Vidal MS, Luna GC, Toledo J, de Buschiazzo PM, Raimondi JC (2002) Reduction of ischemia-reperfusion injury in parenchymal and nonparenchymal liver cells by donor treatment with DL-alpha-tocopherol prior to organ harvest. Transplant Proc 34(4):1086–1091

    CAS  PubMed  Google Scholar 

  67. Wu L, Tian X, Zuo H, Zheng W, Li X, Yuan M, Tian X, Song H (2022) miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts. J Nanobiotechnology 20(1):196

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tian X, Wu L, Li X, Zheng W, Zuo H, Song H (2023) Exosomes derived from bone marrow mesenchymal stem cells alleviate biliary ischemia reperfusion injury in fatty liver transplantation by inhibiting ferroptosis. Mol Cell Biochem. https://doi.org/10.1007/s11010-023-04770-8

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zuo H, Wang Y, Yuan M, Zheng W, Tian X, Pi Y, Zhang X, Song H (2023) Small extracellular vesicles from HO-1-modified bone marrow-derived mesenchymal stem cells attenuate ischemia-reperfusion injury after steatotic liver transplantation by suppressing ferroptosis via miR-214-3p. Cell Signal 109:110793

    CAS  PubMed  Google Scholar 

  70. Sun D, Yang L, Zheng W, Cao H, Wu L, Song H (2021) Protective Effects of bone marrow mesenchymal stem cells (BMMSCS) Combined with normothermic machine perfusion on liver grafts donated after circulatory death via reducing the ferroptosis of hepatocytes. Med Sci Monit 27:e930258

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, Zhao X, Xia Q, Zhong Q, Zhang J (2022) Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ 29(9):1705–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A et al (2019) Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest 129(6):2293–2304

    PubMed  PubMed Central  Google Scholar 

  73. Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R (2022) IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 193(Pt 2):579–594

    CAS  PubMed  Google Scholar 

  74. Zhang W, Gong L, Zhang D, Hu X (2023) Ferroptosis related gene signature in T cell-mediated rejection after kidney transplantation. BMC Med Genomics 16(1):11

    PubMed  PubMed Central  Google Scholar 

  75. He L, Wang B, Wang X, Liu Y, Song X, Zhang Y, Li X, Yang H (2022) Uncover diagnostic immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation-related CCR5, CD86, CD8A, ITGAM, and PTPRC in kidney transplantation patients with allograft rejection. Ren Fail 44(1):1850–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang Q, Li J, Wang Y, Sun Q (2023) Identification and verification of hub genes associated with ferroptosis in ischemia and reperfusion injury during renal transplantation. Int Immunopharmacol 120:110393

    CAS  PubMed  Google Scholar 

  77. Zhao J, Li J, Wei D, Gao F, Yang X, Yue B, Xiong D, Liu M, Xu H, Hu C, Chen J (2023) Liproxstatin-1 alleviates lung transplantation-induced cold ischemia-reperfusion injury by inhibiting ferroptosis. Transplantation. https://doi.org/10.1097/TP.0000000000004638

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bruni A, Pepper AR, Pawlick RL, Gala-Lopez B, Gamble AF, Kin T, Seeberger K, Korbutt GS, Bornstein SR, Linkermann A, Shapiro AMJ (2018) Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis 9(6):595

    PubMed  PubMed Central  Google Scholar 

  79. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6(1):128

    PubMed  PubMed Central  Google Scholar 

  80. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825

    CAS  PubMed  Google Scholar 

  82. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192

    CAS  PubMed  Google Scholar 

  83. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103

    CAS  PubMed  Google Scholar 

  84. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA 115(46):E10888–E10897

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368(6494):eaaz7548

    CAS  PubMed  Google Scholar 

  86. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T (2021) Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep 34(12):108887

    CAS  PubMed  Google Scholar 

  88. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF et al (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579(7799):415–420

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Noda K, Tane S, Haam SJ, D’Cunha J, Hayanga AJ, Luketich JD, Shigemura N (2017) Targeting circulating leukocytes and pyroptosis during ex vivo lung perfusion improves lung preservation. Transplantation 101(12):2841–2849

    PubMed  Google Scholar 

  90. Hong BJ, Liu H, Wang ZH, Zhu YX, Su LY, Zhang MX, Xu K, Chen JZ (2017) Inflammasome activation involved in early inflammation reaction after liver transplantation. Immunol Lett 190:265–271

    CAS  PubMed  Google Scholar 

  91. Yu Y, Cheng Y, Pan Q, Zhang YJ, Jia DG, Liu YF (2019) Effect of the selective NLRP3 inflammasome inhibitor mcc950 on transplantation outcome in a pig liver transplantation model with organs from donors after circulatory death preserved by hypothermic machine perfusion. Transplantation 103(2):353–362

    CAS  PubMed  Google Scholar 

  92. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y et al (2020) FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21(7):736–745

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiao C, Zhao H, Zhu H, Zhang Y, Su Q, Zhao F, Wang R (2020) Tisp40 induces tubular epithelial cell GSDMD-Mediated pyroptosis in renal ischemia-reperfusion injury via NF-Κb signaling. Front Physiol 11:906

    PubMed  PubMed Central  Google Scholar 

  94. Zhong Y, Li YP, Yin YQ, Hu BL, Gao H (2020) Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol 86:106768

    CAS  PubMed  Google Scholar 

  95. Hua S, Ma M, Fei X, Zhang Y, Gong F, Fang M (2019) Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated uffer cells pyroptosis. Int Immunopharmacol 68:145–155

    CAS  PubMed  Google Scholar 

  96. Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C, Zhang J (2020) Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol 32:101534

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou P, Song NC, Zheng ZK, Li YQ, Li JS (2022) MMP2 and MMP9 contribute to lung ischemia-reperfusion injury via promoting pyroptosis in mice. BMC Pulm Med 22(1):230

    CAS  PubMed  PubMed Central  Google Scholar 

  98. David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci (Landmark Ed) 14(3):1116–1128

    CAS  PubMed  Google Scholar 

  99. Virag L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ (2013) Poly(ADP-ribose) signaling in cell death. Mol Aspects Med 34:1153–1167

    CAS  PubMed  Google Scholar 

  100. Chiarugi A (2005) Intrinsic mechanisms of poly(ADP-ribose) neurotoxicity: three hypotheses. Neurotoxicology 26:847–855

    CAS  PubMed  Google Scholar 

  101. Yu SW, Wang H, Dawson TM, Dawson VL (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 14:303–317

    CAS  PubMed  Google Scholar 

  102. del Moral RM, Gómez-Morales M, Hernández-Cortés P, Aguilar D, Caballero T et al (2013) PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. Sci World J 2013:486574

    Google Scholar 

  103. Morrow DA, Brickman CM, Murphy SA, Baran K, Krakover R, Dauerman H, Kumar S, Slomowitz N, Grip L, McCabe CH, Salzman AL (2009) A randomized, placebo-controlled trial to evaluate the tolerability, safety, pharmacokinetics, and pharmacodynamics of a potent inhibitor of poly(ADP-ribose) polymerase (INO-1001) in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of the TIMI 37 trial. J Thromb Thrombolysis 27(4):359–364

    CAS  PubMed  Google Scholar 

  104. Xu C, Liu Y, Zhang Y, Gao L (2022) The role of a cuproptosis-related prognostic signature in colon cancer tumor microenvironment and immune responses. Front Genet 13:928105

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, Xu X, Jia T, Li S (2023) The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother 163:114830

    CAS  PubMed  Google Scholar 

  106. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H (2018) Copper deficiency anemia: review article. Ann Hematol 97(9):1527–1534

    CAS  PubMed  Google Scholar 

  108. Rondanelli M, Faliva MA, Infantino V, Gasparri C, Iannello G, Perna S, Riva A, Petrangolini G, Tartara A, Peroni G (2021) Copper as dietary supplement for bone metabolism: a review. Nutrients 13(7):2246

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci 21(23):9259

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Focarelli F, Giachino A, Waldron KJ (2022) Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PloS Pathog 18(7):e1010617

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, Han Q, Li Y, Hu L, Guo J, Pan J, Tang Z (2019) Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro 54:310–316

    CAS  PubMed  Google Scholar 

  112. Lu Q, Zhang Y, Zhao C, Zhang H, Pu Y, Yin L (2022) Copper induces oxidative stress and apoptosis of hippocampal neuron via Pcreb/BDNF/ and Nrf2/HO-1/NQO1 pathway. J Appl Toxicol 42(4):694–705

    CAS  PubMed  Google Scholar 

  113. Powell SR, Gurzenda EM, Wingertzahn MA, Wapnir RA (1999) Promotion of copper excretion from the isolated rat heart attenuates postischemic cardiac oxidative injury. Am J Physiol 277(3):H956–H962

    CAS  PubMed  Google Scholar 

  114. Powell SR, Hall D, Shih A (1991) Copper loading of hearts increases postischemic reperfusion injury. Circ Res 69(3):881–885

    CAS  PubMed  Google Scholar 

  115. Guo Q, Ma M, Yu H, Han Y, Zhang D (2023) Dexmedetomidine enables copper homeostasis in cerebral ischemia/reperfusion via ferredoxin 1. Ann Med 55(1):2209735

    PubMed  PubMed Central  Google Scholar 

  116. Liu H, Jing X, Dong A, Bai B, Wang H (2017) Overexpression of TIMP3 protects against cardiac ischemia/reperfusion injury by inhibiting myocardial apoptosis through ROS/MAPK pathway. Cell Physiol Biochem 44(3):1011–1023

    CAS  PubMed  Google Scholar 

  117. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double-edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Falcieri E, Gobbi P, Zamai L, Vitale M (1994) Ultrastructural features of apoptosis. Scanning Microsc 8(3):653–666

    CAS  PubMed  Google Scholar 

  119. Treskatsch S, Shakibaei M, Feldheiser A, Shaqura M, Dehe L, Roepke TK, Spies C, Schäfer M, Mousa SA (2015) Ultrastructural changes associated with myocardial apoptosis, in failing rat hearts induced by volume overload. Int J Cardiol 197:327–332

    CAS  PubMed  Google Scholar 

  120. Krautwald S, Ziegler E, Rölver L, Linkermann A, Keyser KA, Steen P, Wollert KC, Korf-Klingebiel M, Kunzendorf U (2010) Effective blockage of both the extrinsic and intrinsic pathways of apoptosis in mice by TAT-crmA. J Biol Chem 285(26):19997–20005

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kristen AV, Ackermann K, Buss S, Lehmann L, Schnabel PA, Haunstetter A, Katus HA, Hardt SE (2013) Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion. Cardiovasc Pathol 22(4):280–286

    CAS  PubMed  Google Scholar 

  122. Ben-Shahar Y, Abassi Z, Pollak Y, Koppelmann T, Gorelik G, Sukhotnik I (2021) Cell death induction (extrinsic versus intrinsic apoptotic pathway) by intestinal ischemia-reperfusion injury in rats is time-depended. Pediatr Surg Int 37(3):369–376

    PubMed  Google Scholar 

  123. Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275(40):31199–31203

    CAS  PubMed  Google Scholar 

  124. Elena-Real CA, Díaz-Quintana A, González-Arzola K, Velázquez-Campoy A, Orzáez M, López-Rivas A, Gil-Caballero S, De la Rosa MÁ, Díaz-Moreno I (2018) Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell Death Dis 9(3):365

    PubMed  PubMed Central  Google Scholar 

  125. Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY (2023) The role of P53 in myocardial ischemia-reperfusion injury. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-023-07480-x

    Article  PubMed  Google Scholar 

  126. Shao ZH, Wojcik KR, Qin Y, Li CQ, Vanden Hoek TL, Hamann KJ (2011) Blockade of caspase-2 Activity inhibits ischemia/reperfusion-induced mitochondrial reactive oxygen burst and cell death in cardiomyocytes. J Cell Death 4:7–18

    CAS  Google Scholar 

  127. Imamura R, Isaka Y, Sandoval RM, Ori A, Adamsky S, Feinstein E, Molitoris BA, Takahara S (2010) Intravital two-photon microscopy assessment of renal protection efficacy of siRNA for p53 in experimental rat kidney transplantation models. Cell Transplant 19(12):1659–1670

    PubMed  Google Scholar 

  128. Rossi A, Asthana A, Riganti C, Sedrakyan S, Byers LN, Robertson J, Senger RS et al (2023) Mitochondria transplantation mitigates damage in an in vitro model of renal tubular injury and in an ex vivo model of DCD renal transplantation. Ann Surg. https://doi.org/10.1097/SLA.0000000000006005

    Article  PubMed  Google Scholar 

  129. Juriasingani S, Jackson A, Zhang MY, Ruthirakanthan A, Dugbartey GJ, Sogutdelen E, Levine M, Mandurah M, Whiteman M, Luke P, Sener A (2021) Evaluating the effects of subnormothermic perfusion with AP39 in a novel blood-free model of ex vivo kidney preservation and reperfusion. Int J Mol Sci 22(13):7180

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang MY, Dugbartey GJ, Juriasingani S, Akbari M, Liu W, Haig A, McLeod P, Arp J, Sener A (2022) Sodium thiosulfate-supplemented UW solution protects renal grafts against prolonged cold ischemia-reperfusion injury in a murine model of syngeneic kidney transplantation. Biomed Pharmacother 145:112435

    PubMed  Google Scholar 

  131. Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T, Harashima H (2020) Challenges in promoting mitochondrial transplantation therapy. Int J Mol Sci 21:6365

    PubMed  PubMed Central  Google Scholar 

  132. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, Seth P, Bloch DB, Levitsky S, Cowan DB et al (2013) Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H966–H982

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kaza AK, Wamala I, Friehs I, Kuebler JD, Rathod RH, Berra I, Ericsson M, Yao R, Thedsanamoorthy JK, Zurakowski D et al (2017) Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153:934–943

    PubMed  Google Scholar 

  134. Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Orfany A, Guariento A, Iken K, Friehs I, Zurakowski D, Del Nido PJ et al (2019) Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion 46:103–115

    CAS  PubMed  Google Scholar 

  135. Pollara J, Edwards RW, Lin L, Bendersky VA, Brennan TV (2018) Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight 3:e121622

    PubMed  PubMed Central  Google Scholar 

  136. Lin L, Xu H, Bishawi M, Feng F, Samy K, Truskey G, Barbas AS, Kirk AD, Brennan TV (2019) Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant 19:1917–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20(8):1754–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang C, Zhao T, Zhao Z, Jia Y, Li L, Zhang Y, Song M, Rong R, Xu M, Nicholson ML, Zhu T, Yang B (2014) Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther 22(10):1817–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Saren G, Wong A, Lu YB, Baciu C, Zhou W, Zamel R, Soltanieh S, Sugihara J, Liu M (2021) Ischemia-reperfusion injury in a simulated lung transplant setting differentially regulates transcriptomic profiles between human lung endothelial and epithelial cells. Cells 10(10):2713

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Shen XD, Ke B, Zhai Y, Tsuchihashi SI, Gao F, Duarte S, Coito A, Busuttil RW, Allison AC, Kupiec-Weglinski JW (2007) Diannexin, a novel annexin V homodimer, protects rat liver transplants against cold ischemia-reperfusion injury. Am J Transplant 7(11):2463–2471

    CAS  PubMed  Google Scholar 

  141. Hashimoto K, Kim H, Oishi H, Chen M, Iskender I, Sakamoto J, Ohsumi A, Guan Z, Hwang D, Waddell TK, Cypel M, Liu M, Keshavjee S (2016) Annexin V homodimer protects against ischemia reperfusion-induced acute lung injury in lung transplantation. J Thorac Cardiovasc Surg 151(3):861–869

    CAS  PubMed  Google Scholar 

  142. Cooper M, Kapur S, Stratta R (2010) Diannexin, a novel ischemia/reperfusion therapeutic agent, reduces delayed graft function (DGF) in renal transplant recipients from marginal donors. Am J Transplant 10:S83

    Google Scholar 

  143. Hashimoto K, Besla R, Zamel R, Juvet S, Kim H, Azad S, Waddell TK, Cypel M, Liu M, Keshavjee S (2016) Circulating cell death biomarkers may predict survival in human lung transplantation. Am J Respir Crit Care Med 194(1):97–105

    CAS  PubMed  Google Scholar 

  144. Hashimoto K, Cypel M, Juvet S, Saito T, Zamel R, Machuca TN, Hsin M, Kim H, Waddell TK, Liu M, Keshavjee S (2017) Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation. J Heart Lung Transplant S1053–2498(17):31870–31873

    Google Scholar 

  145. Du C, Wang S, Diao H, Guan Q, Zhong R, Jevnikar AM (2006) Increasing resistance of tubular epithelial cells to apoptosis by shRNA therapy ameliorates renal ischemia-reperfusion injury. Am J Transplant 6(10):2256–2267

    CAS  PubMed  Google Scholar 

  146. Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S (2016) Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 7(1):157

    PubMed  PubMed Central  Google Scholar 

  147. Zito G, Miceli V, Carcione C, Busà R, Bulati M, Gallo A, Iannolo G, Pagano D, Conaldi PG (2022) Human amnion-derived mesenchymal stromal/stem cells pre-conditioning inhibits inflammation and apoptosis of immune and parenchymal cells in an in vitro model of liver ischemia/reperfusion. Cells 11(4):709

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sarre C, Contreras-Lopez R, Nernpermpisooth N, Barrere C, Bahraoui S, Terraza C et al (2022) PPARβ/δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia-reperfusion injury. Stem Cell Res Ther 13(1):167

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Li JY, Gu X, Zhang WH, Jia S, Zhou Y (2009) GdCl3 abates hepatic ischemia-reperfusion injury by inhibiting apoptosis in rats. Hepatobiliary Pancreat Dis Int 8(5):518–523

    CAS  PubMed  Google Scholar 

  150. Drognitz O, Liu X, Benz S, Obermaier R, Herb T, Schareck W, Hopt UT (2002) Ischemia/reperfusion injury induces acinar cell apoptosis in experimental pancreas transplantation. Transplant Proc 34(6):2361

    CAS  PubMed  Google Scholar 

  151. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    CAS  PubMed  Google Scholar 

  152. Mizumura K, Cloonan S, Choi ME, Hashimoto S, Nakahira K, Ryter SW, Choi AM (2016) Autophagy: friend or foe in lung disease? Ann Am Thorac Soc 13(Suppl 1):S40-7

    PubMed  PubMed Central  Google Scholar 

  153. Lin H, Dai S, Liu W, Liu X, Yu B, Tang J (2019) Prolonged cold ischemia increases reactive oxygen species and activates autophagy by enhancing glycolysis in the graft through the Mtor signaling pathway in orthotopic lung transplantation in rats. J Heart Lung Transplant 38:S242-243

    Google Scholar 

  154. Lin HQ, Dai SH, Liu WC, Lin X, Yu BT, Chen SB, Liu S, Ling H, Tang J (2021) Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model. Life Sci 268:118820

    CAS  PubMed  Google Scholar 

  155. Qin J, Zhou J, Dai X, Zhou H, Pan X, Wang X, Zhang F, Rao J, Lu L (2016) Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res 8(8):3364–3375

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu A, Huang L, Guo E, Li R, Yang J, Li A, Yang Y, Liu S, Hu J, Jiang X, Dirsch O, Dahmen U, Sun J (2016) Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep 6:25042

    CAS  PubMed  PubMed Central  Google Scholar 

  157. He C (2022) Balancing nutrient and energy demand and supply via autophagy. Curr Biol 32(12):R684–R696

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shi B, Ma M, Zheng Y, Pan Y, Lin X (2019) mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol 234(8):12562–12568

    CAS  PubMed  Google Scholar 

  159. Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang M, Linn BS, Zhang Y, Ren J (2019) Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 1865(9):2293–2302

    CAS  PubMed  Google Scholar 

  161. Li G, Yang J, Yang C, Zhu M, Jin Y, McNutt MA, Yin Y (2018) PTENα regulates mitophagy and maintains mitochondrial quality control. Autophagy 14(10):1742–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    CAS  PubMed  Google Scholar 

  163. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, He L, Tan J, Liu Y, Liu H, Sun L, Duan S, Peng Y, Liu F, Yin XM, Zhang Z, Dong Z (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14(5):880–897

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, He L, Liu Y, Chen G, Zhang Z, Yin XM, Dong Z (2019) Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis 10(9):677

    PubMed  PubMed Central  Google Scholar 

  166. Ishihara M, Urushido M, Hamada K, Matsumoto T, Shimamura Y, Ogata K, Inoue K, Taniguchi Y, Horino T, Fujieda M, Fujimoto S, Terada Y (2013) Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol Renal Physiol 305(4):F495-509

    CAS  PubMed  Google Scholar 

  167. Bhogal RH, Weston CJ, Velduis S, Leuvenink GDH, Reynolds GM, Davies S et al (2018) The reactive oxygen species-mitophagy signaling pathway regulates liver endothelial cell survival during ischemia/reperfusion injury. Liver Transpl 24(10):1437–1452

    PubMed  Google Scholar 

  168. Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, Yin XM, Dong Z (2019) Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15(12):2142–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L, Ravichandran KS (2013) Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493:547–551

    CAS  PubMed  Google Scholar 

  170. Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL (2014) Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS one 9:e104741

    PubMed  PubMed Central  Google Scholar 

  171. Boros P, Bromberg JS (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant 6:652–658

    CAS  PubMed  Google Scholar 

  172. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366

    CAS  PubMed  Google Scholar 

  173. Mathis D, Shoelson SE (2011) Immunometabolism: an emerging frontier. Nat Rev Immunol 11:81

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Degauque N, Brosseau C, Brouard S (2018) Regulation of the immune response by the inflammatory metabolic microenvironment in the context of allotransplantation. Front Immunol 9:1465

    PubMed  PubMed Central  Google Scholar 

  175. Sacks SH, Chowdhury P, Zhou W (2003) Role of the complement system in rejection. Curr Opin Immunol 15:487–492

    CAS  PubMed  Google Scholar 

  176. Boros P, Bromberg JS (2008) De novo autoimmunity after organ transplantation: targets and possible pathways. Hum Immunol 69:383–388

    CAS  PubMed  Google Scholar 

  177. Oberbarnscheidt MH, Zeng Q, Li Q, Dai H, Williams AL, Shlomchik WD, Rothstein DM, Lakkis FG (2014) Non-self recognition by monocytes initiates allograft rejection. J Clin Invest 124:3579–3589

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sarhan M, von Massenhausen A, Hugo C, Oberbauer R, Linkermann A (2018) Immunological consequences of kidney cell death. Cell Death Dis 9:114

    PubMed  PubMed Central  Google Scholar 

  179. Braza F, Brouard S, Chadban S, Goldstein DR (2016) Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat Rev Nephrol 12:281

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Deng JF, Geng L, Qian YG, Li H, Wang Y, Xie HY, Feng XW, Zheng SS (2007) The role of toll-like receptors 2 and 4 in acute allograft rejection after liver transplantation. Transplant Proc 39:3222–3224

    CAS  PubMed  Google Scholar 

  181. Alegre ML, Chong A (2009) Toll-like receptors (TLRs) in transplantation. Front Biosci (Elite Ed) 1:36–43

    PubMed  Google Scholar 

  182. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135

    CAS  PubMed  Google Scholar 

  183. Leventhal JS, Schröppel B (2012) Toll-like receptors in transplantation: sensing and reacting to injury. Kidney Int 81:826–832

    CAS  PubMed  Google Scholar 

  184. Sheen JH, Strainic MG, Liu J, Zhang W, Yi Z, Medof ME, Heeger PS (2017) TLR-induced murine dendritic cell (DC) activation requires DC-intrinsic complement. J Immunol 199:278–291

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GJD; Literature search: Manuscript writing: GJD; Manuscript review and editing: GJD; Figure and table preparation: GJD; Approval: GJD.

Corresponding author

Correspondence to George J. Dugbartey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugbartey, G.J. Cellular and molecular mechanisms of cell damage and cell death in ischemia–reperfusion injury in organ transplantation. Mol Biol Rep 51, 473 (2024). https://doi.org/10.1007/s11033-024-09261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09261-7

Keywords

Navigation