Skip to main content

Advertisement

Matrix stiffness, endothelial dysfunction and atherosclerosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gimbrone MJ, Garcia-Cardena G (2016) Endothelial cell dysfunction and the pathobiology of Atherosclerosis[J]. Circ Res 118(4):620–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mehta V, Pang KL, Rozbesky D et al (2020) The guidance receptor plexin D1 is a mechanosensor in endothelial cells[J]. Nature 578(7794):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dargel R (1989) [The lipid infiltration theory of atherosclerosis] [J]. Z Med Lab Diagn 30(5):251–255

    CAS  PubMed  Google Scholar 

  4. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis[J]. Cell 145(3):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feaver RE, Gelfand BD, Blackman BR (2013) Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells[J]. Nat Commun 4:1525

    Article  PubMed  Google Scholar 

  6. Souilhol C, Serbanovic-Canic J, Fragiadaki M et al (2020) Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes[J]. Nat Rev Cardiol 17(1):52–63

    Article  PubMed  Google Scholar 

  7. Wang L, Luo JY, Li B et al (2016) Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow[J]. Nature 540(7634):579–582

    Article  CAS  PubMed  Google Scholar 

  8. Brown AJ, Teng Z, Evans PC et al (2016) Role of biomechanical forces in the natural history of coronary atherosclerosis[J]. Nat Rev Cardiol 13(4):210–220

    Article  PubMed  Google Scholar 

  9. Hahn C, Schwartz MA (2008) The role of cellular adaptation to mechanical forces in atherosclerosis[J]. Arterioscler Thromb Vasc Biol 28(12):2101–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palombo C, Kozakova M (2016) Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications[J]. Vascul Pharmacol 77:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Vania V, Wang L, Tjakra M et al (2020) The interplay of signaling pathway in endothelial cells-matrix stiffness dependency with targeted-therapeutic drugs[J]. Biochim Biophys Acta Mol Basis Dis 1866(5):165645

    Article  CAS  PubMed  Google Scholar 

  12. Humphrey JD, Eberth JF, Dye WW et al (2009) Fundamental role of axial stress in compensatory adaptations by arteries[J]. J Biomech 42(1):1–8

    Article  CAS  PubMed  Google Scholar 

  13. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology[J]. J R Soc Interface 8(63):1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu K, Wang C, Huang L et al (2022) TET1s deficiency exacerbates oscillatory shear flow-induced atherosclerosis[J]. Int J Biol Sci 18(5):2163–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raij L, Gonzalez-Ochoa AM (2011) Vascular compliance in blood pressure[J]. Curr Opin Nephrol Hypertens 20(5):457–464

    Article  CAS  PubMed  Google Scholar 

  16. Blacher J, Guerin AP, Pannier B et al (1999) Impact of aortic stiffness on survival in end-stage renal disease[J]. Circulation 99(18):2434–2439

    Article  CAS  PubMed  Google Scholar 

  17. Kohn JC, Lampi MC, Reinhart-King CA (2015) Age-related vascular stiffening: causes and consequences[J]. Front Genet 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  18. Timashev PS, Kotova SL, Belkova GV et al (2016) Atomic Force Microscopy Study of atherosclerosis progression in arterial Walls[J]. Microsc Microanal 22(2):311–325

    Article  CAS  PubMed  Google Scholar 

  19. Gan CT, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension[J]. Chest 132(6):1906–1912

    Article  PubMed  Google Scholar 

  20. Huynh J, Nishimura N, Rana K et al (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration[J]. Sci Transl Med 3(112):112r–122r

    Article  Google Scholar 

  21. Lusis AJ (2000) Atherosclerosis[J] Nat 407(6801):233–241

    Article  CAS  Google Scholar 

  22. Farrar DJ, Bond MG, Riley WA et al (1991) Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys[J]. Circulation 83(5):1754–1763

    Article  CAS  PubMed  Google Scholar 

  23. van Popele NM, Grobbee DE, Bots ML et al (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam Study[J]. Stroke 32(2):454–460

    Article  PubMed  Google Scholar 

  24. Zureik M, Bureau JM, Temmar M et al (2003) Echogenic carotid plaques are associated with aortic arterial stiffness in subjects with subclinical carotid atherosclerosis[J]. Hypertension 41(3):519–527

    Article  CAS  PubMed  Google Scholar 

  25. Birukov KG (2009) Cyclic stretch, reactive oxygen species, and vascular remodeling[J]. Antioxid Redox Signal 11(7):1651–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh YS (2018) Arterial stiffness and hypertension[J]. Clin Hypertens 24:17

    Article  PubMed  PubMed Central  Google Scholar 

  27. Samokhin AO, Stephens T, Wertheim BM et al (2018) NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension[J].Sci Transl Med, 10(445)

  28. Payne RA, Wilkinson IB, Webb DJ (2010) Arterial stiffness and hypertension: emerging concepts[J]. Hypertension 55(1):9–14

    Article  CAS  PubMed  Google Scholar 

  29. Lacolley P, Regnault V, Avolio AP (2018) Smooth muscle cell and arterial aging: basic and clinical aspects[J]. Cardiovasc Res 114(4):513–528

    Article  CAS  PubMed  Google Scholar 

  30. Lanzer P, Boehm M, Sorribas V et al (2014) Medial vascular calcification revisited: review and perspectives[J]. Eur Heart J 35(23):1515–1525

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging[J]. Circulation 107(3):490–497

    Article  PubMed  Google Scholar 

  32. Zhou T, Zheng Y, Sun L et al (2019) Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury[J]. Nat Neurosci 22(3):421–435

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mattace-Raso FU, van der Cammen TJ, Hofman A et al (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study[J]. Circulation 113(5):657–663

    Article  PubMed  Google Scholar 

  34. Guthikonda S, Haynes WG (2006) Homocysteine: role and implications in atherosclerosis[J]. Curr Atheroscler Rep 8(2):100–106

    Article  CAS  PubMed  Google Scholar 

  35. Widlansky ME, Gokce N, Keaney JJ et al (2003) The clinical implications of endothelial dysfunction[J]. J Am Coll Cardiol 42(7):1149–1160

    Article  CAS  PubMed  Google Scholar 

  36. Karki P, Birukova AA (2018) Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series) [J]. Pulm Circ, 8(2):767774668

  37. Wang Y, Wang G, Luo X et al (2012) Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells[J]. Burns 38(3):414–420

    Article  PubMed  Google Scholar 

  38. Yeung T, Georges PC, Flanagan LA et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion[J]. Cell Motil Cytoskeleton 60(1):24–34

    Article  PubMed  Google Scholar 

  39. Elosegui-Artola A, Oria R, Chen Y et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity[J]. Nat Cell Biol 18(5):540–548

    Article  CAS  PubMed  Google Scholar 

  40. Le Master E, Ahn SJ, Levitan I (2020) Mechanisms of endothelial stiffening in dyslipidemia and aging: oxidized lipids and shear stress[J]. Curr Top Membr 86:185–215

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yi B, Shen Y, Tang H et al (2020) Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells[J]. Acta Biomater 108:237–249

    Article  CAS  PubMed  Google Scholar 

  42. Sheng S, Qiu J, Tang C et al (2012) Effect of stiffness of substrate on vascular endothelial cell growth and proliferation [J]. J Chongqing Med Univ 37(08):665–667

    CAS  Google Scholar 

  43. Chen G, Zhao L, Feng J et al (2013) Validation of reliable reference genes for real-time PCR in human umbilical vein endothelial cells on substrates with different stiffness[J]. PLoS ONE 8(6):e67360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vania V, Wang L, Tjakra M et al (2020) The interplay of signaling pathway in endothelial cells-matrix stiffness dependency with targeted-therapeutic drugs[J]. Biochim Biophys Acta Mol Basis Dis 1866(5):165645

    Article  CAS  PubMed  Google Scholar 

  45. Simmons CS, Ribeiro AJ, Pruitt BL (2013) Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain[J]. Lab Chip 13(4):646–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassanisaber H, Jafari L, Campeau MA et al (2019) The effect of substrate bulk stiffness on focal and fibrillar adhesion formation in human abdominal aortic endothelial cells[J]. Mater Sci Eng C Mater Biol Appl 98:572–583

    Article  CAS  PubMed  Google Scholar 

  47. Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans[J]. Matrix Biol 42:11–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delgadillo LF, Lomakina EB, Kuebel J et al (2021) Changes in endothelial glycocalyx layer protective ability after inflammatory stimulus[J]. Am J Physiol Cell Physiol 320(2):C216–C224

    Article  CAS  PubMed  Google Scholar 

  49. Parnigoni A, Viola M, Karousou E et al (2022) Hyaluronan in pathophysiology of vascular diseases: specific roles in smooth muscle cells, endothelial cells, and macrophages[J]. Am J Physiol Cell Physiol 323(2):C505–C519

    Article  CAS  PubMed  Google Scholar 

  50. Fischer JW (2019) Role of hyaluronan in atherosclerosis: current knowledge and open questions[J]. Matrix Biol 78–79:324–336

    Article  PubMed  Google Scholar 

  51. Carava E, Moretto P, Caon I et al HA and HS changes in endothelial inflammatory Activation[J]. Biomolecules, 2021,11(6).

  52. Broekhuizen LN, Lemkes BA, Mooij HL et al (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus[J]. Diabetologia 53(12):2646–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nieuwdorp M, Holleman F, de Groot E et al (2007) Perturbation of hyaluronan metabolism predisposes patients with type 1 diabetes mellitus to atherosclerosis[J]. Diabetologia 50(6):1288–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nagy N, Freudenberger T, Melchior-Becker A et al (2010) Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis[J]. Circulation 122(22):2313–2322

    Article  CAS  PubMed  Google Scholar 

  55. Riessen R, Wight TN, Pastore C et al (1996) Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries[J]. Circulation 93(6):1141–1147

    Article  CAS  PubMed  Google Scholar 

  56. Kashima Y, Takahashi M, Shiba Y et al (2013) Crucial role of hyaluronan in neointimal formation after vascular injury[J]. PLoS ONE 8(3):e58760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chai S, Chai Q, Danielsen CC et al (2005) Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis[J]. Circ Res 96(5):583–591

    Article  CAS  PubMed  Google Scholar 

  58. Kiene LS, Homann S, Suvorava T et al (2016) Deletion of Hyaluronan synthase 3 inhibits neointimal hyperplasia in Mice[J]. Arterioscler Thromb Vasc Biol 36(2):e9–e16

    Article  CAS  PubMed  Google Scholar 

  59. Gondelaud F, Ricard-Blum S (2019) Structures and interactions of syndecans[J]. FEBS J 286(15):2994–3007

    Article  CAS  PubMed  Google Scholar 

  60. Thi MM, Tarbell JM, Weinbaum S et al (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model[J]. Proc Natl Acad Sci U S A 101(47):16483–16488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Asplund A, Ostergren-Lunden G, Camejo G et al (2009) Hypoxia increases macrophage motility, possibly by decreasing the heparan sulfate proteoglycan biosynthesis[J]. J Leukoc Biol 86(2):381–388

    Article  CAS  PubMed  Google Scholar 

  62. Zhang GL, Zhang X, Wang XM et al (2014) Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer’s disease[J]. Biomed Res Int 2014:516028

    PubMed  PubMed Central  Google Scholar 

  63. Kaksonen M, Pavlov I, Voikar V et al (2002) Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory[J]. Mol Cell Neurosci 21(1):158–172

    Article  CAS  PubMed  Google Scholar 

  64. Denhez F, Wilcox-Adelman SA, Baciu PC et al (2002) Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5[J]. J Biol Chem 277(14):12270–12274

    Article  CAS  PubMed  Google Scholar 

  65. Boyanovsky BB, Shridas P, Simons M et al (2009) Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL[J]. J Lipid Res 50(4):641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nikmanesh M, Cancel LM, Shi ZD et al (2019) Heparan sulfate proteoglycan, integrin, and syndecan-4 are mechanosensors mediating cyclic strain-modulated endothelial gene expression in mouse embryonic stem cell-derived endothelial cells[J]. Biotechnol Bioeng 116(10):2730–2741

    Article  CAS  PubMed  Google Scholar 

  67. Baeyens N, Mulligan-Kehoe MJ, Corti F et al (2014) Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling[J]. Proc Natl Acad Sci U S A 111(48):17308–17313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lipphardt M, Dihazi H, Maas JH et al Syndecan-4 as a marker of endothelial dysfunction in patients with resistant Hypertension[J].J Clin Med, 2020,9(9).

  69. Haas H, Steitz R, Fasano A et al (2007) Laminar order within Langmuir-Blodgett multilayers from phospholipid and myelin basic protein: a neutron reflectivity study[J]. Langmuir 23(16):8491–8496

    Article  CAS  PubMed  Google Scholar 

  70. Hynes RO, Naba A (2012) Overview of the matrisome–an inventory of extracellular matrix constituents and functions[J]. Cold Spring Harb Perspect Biol 4(1):a4903

    Article  Google Scholar 

  71. Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension[J]. Pharmacol Ther 111(3):771–791

    Article  CAS  PubMed  Google Scholar 

  72. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis[J]. Nat Rev Mol Cell Biol 15(12):802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kothapalli D, Liu SL, Bae YH et al (2012) Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening[J]. Cell Rep 2(5):1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. VanderBurgh JA, Reinhart-King CA (2018) The role of age-related Intimal Remodeling and Stiffening in Atherosclerosis[J]. Adv Pharmacol 81:365–391

    Article  CAS  PubMed  Google Scholar 

  75. Rohwedder I, Montanez E, Beckmann K et al (2012) Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation[J]. EMBO Mol Med 4(7):564–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Palotie A, Tryggvason K, Peltonen L et al (1983) Components of subendothelial aorta basement membrane. Immunohistochemical localization and role in cell attachment[J]. Lab Invest 49(3):362–370

    CAS  PubMed  Google Scholar 

  77. Byfield FJ, Reen RK, Shentu TP et al (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D[J]. J Biomech 42(8):1114–1119

    Article  PubMed  PubMed Central  Google Scholar 

  78. Woodrum DA, Romano AJ, Lerman A et al (2006) Vascular wall elasticity measurement by magnetic resonance imaging[J]. Magn Reson Med 56(3):593–600

    Article  CAS  PubMed  Google Scholar 

  79. Yi B, Shen Y, Tang H et al (2020) Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells[J]. Acta Biomater 108:237–249

    Article  CAS  PubMed  Google Scholar 

  80. Zhang C, Adamos C, Oh MJ et al (2017) oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27(kip1) signaling: opposite effects of oxLDL and cholesterol loading[J]. Am J Physiol Cell Physiol 313(3):C340–C351

    Article  PubMed  PubMed Central  Google Scholar 

  81. Monson KL, Goldsmith W, Barbaro NM et al (2003) Axial mechanical properties of fresh human cerebral blood vessels[J]. J Biomech Eng 125(2):288–294

    Article  PubMed  Google Scholar 

  82. Henry J, Yu J, Wang A et al (2017) Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering[J]. Biofabrication 9(3):35007

    Article  Google Scholar 

  83. He L, Zhang CL, Chen Q et al (2022) Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics[J]. Pharmacol Ther 235:108152

    Article  CAS  PubMed  Google Scholar 

  84. Duprez DA (2010) Arterial stiffness and endothelial function: key players in vascular health[J]. Hypertension 55(3):612–613

    Article  CAS  PubMed  Google Scholar 

  85. Kinlay S, Creager MA, Fukumoto M et al (2001) Endothelium-derived nitric oxide regulates arterial elasticity in human arteries in vivo[J]. Hypertension 38(5):1049–1053

    Article  CAS  PubMed  Google Scholar 

  86. Wilkinson IB, Qasem A, McEniery CM et al (2002) Nitric oxide regulates local arterial distensibility in vivo[J]. Circulation 105(2):213–217

    Article  CAS  PubMed  Google Scholar 

  87. Thacher TN, Silacci P, Stergiopulos N et al (2010) Autonomous effects of shear stress and cyclic circumferential stretch regarding endothelial dysfunction and oxidative stress: an ex vivo arterial model[J]. J Vasc Res 47(4):336–345

    Article  CAS  PubMed  Google Scholar 

  88. Gonzalez-Santiago L, Lopez-Ongil S, Rodriguez-Puyol M et al (2002) Decreased nitric oxide synthesis in human endothelial cells cultured on type I collagen[J]. Circ Res 90(5):539–545

    Article  CAS  PubMed  Google Scholar 

  89. Kemeny SF, Figueroa DS, Andrews AM et al (2011) Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress[J]. J Biomech 44(10):1927–1935

    Article  PubMed  Google Scholar 

  90. Thacher T, Gambillara V, Da SR et al (2010) Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model[J]. Cardiovasc Pathol 19(4):e91–e98

    Article  CAS  PubMed  Google Scholar 

  91. Dejana E (2004) Endothelial cell-cell junctions: happy together[J]. Nat Rev Mol Cell Biol 5(4):261–270

    Article  CAS  PubMed  Google Scholar 

  92. Huynh J, Nishimura N, Rana K et al (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration[J]. Sci Transl Med 3(112):112r–122r

    Article  Google Scholar 

  93. Hardin C, Rajendran K, Manomohan G et al (2013) Glassy dynamics, cell mechanics, and endothelial permeability[J]. J Phys Chem B 117(42):12850–12856

    Article  CAS  PubMed  Google Scholar 

  94. Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes[J]. Microvasc Res 77(1):53–63

    Article  CAS  PubMed  Google Scholar 

  95. Dejana E (2004) Endothelial cell-cell junctions: happy together[J]. Nat Rev Mol Cell Biol 5(4):261–270

    Article  CAS  PubMed  Google Scholar 

  96. Baumgartner W, Schutz GJ, Wiegand J et al (2003) Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells[J]. J Cell Sci 116(Pt 6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  97. Ukropec JA, Hollinger MK, Woolkalis MJ (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress[J]. Exp Cell Res 273(2):240–247

    Article  CAS  PubMed  Google Scholar 

  98. Makita S, Nakamura M, Hiramori K (2005) The association of C-reactive protein levels with carotid intima-media complex thickness and plaque formation in the general population[J]. Stroke 36(10):2138–2142

    Article  CAS  PubMed  Google Scholar 

  99. Chen W, Tian B, Liang J et al (2019) Matrix stiffness regulates the interactions between endothelial cells and monocytes[J]. Biomaterials 221:119362

    Article  CAS  PubMed  Google Scholar 

  100. MacKay JL, Hammer DA (2016) Stiff substrates enhance monocytic cell capture through E-selectin but not P-selectin[J]. Integr Biol (Camb) 8(1):62–72

    Article  CAS  PubMed  Google Scholar 

  101. Wang Y, Shi R, Zhai R et al (2022) Matrix stiffness regulates macrophage polarization in atherosclerosis[J]. Pharmacol Res 179:106236

    Article  CAS  PubMed  Google Scholar 

  102. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus[J]. Nat Rev Mol Cell Biol 10(1):75–82

    Article  CAS  PubMed  Google Scholar 

  103. Doyle AD, Yamada KM (2016) Mechanosensing via cell-matrix adhesions in 3D microenvironments[J]. Exp Cell Res 343(1):60–66

    Article  CAS  PubMed  Google Scholar 

  104. Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: from pathways to scaling relationships[J]. J Cell Biol 216(2):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry[J]. Nat Rev Mol Cell Biol 10(1):63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton[J]. Science 260(5111):1124–1127

    Article  CAS  PubMed  Google Scholar 

  107. Hahn C, Schwartz MA (2008) The role of cellular adaptation to mechanical forces in atherosclerosis[J]. Arterioscler Thromb Vasc Biol 28(12):2101–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miao H, Hu YL, Shiu YT et al (2005) Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations[J]. J Vasc Res 42(1):77–89

    Article  CAS  PubMed  Google Scholar 

  109. Collins C, Osborne LD, Guilluy C et al (2014) Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells[J]. Nat Commun 5:3984

    Article  CAS  PubMed  Google Scholar 

  110. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities[J]. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities[J]. Nat Rev Drug Discov 9(10):804–820

    Article  CAS  PubMed  Google Scholar 

  112. Sun Z, Guo SS, Fassler R (2016) Integrin-mediated mechanotransduction[J]. J Cell Biol 215(4):445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hynes RO (2007) Cell-matrix adhesion in vascular development[J]. J Thromb Haemost 5(Suppl 1):32–40

    Article  CAS  PubMed  Google Scholar 

  114. Mobley AK, Tchaicha JH, Shin J et al (2009) Beta8 integrin regulates neurogenesis and neurovascular homeostasis in the adult brain[J]. J Cell Sci 122(Pt 11):1842–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peters JH, Hynes RO (1996) Fibronectin isoform distribution in the mouse. I. The alternatively spliced EIIIB, EIIIA, and V segments show widespread codistribution in the developing mouse embryo[J]. Cell Adhes Commun 4(2):103–125

    Article  CAS  PubMed  Google Scholar 

  116. Astrof S, Crowley D, George EL et al (2004) Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis[J]. Mol Cell Biol 24(19):8662–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. George EL, Baldwin HS, Hynes RO (1997) Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells[J]. Blood 90(8):3073–3081

    Article  CAS  PubMed  Google Scholar 

  118. Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos[J]. Development 124(21):4309–4319

    Article  CAS  PubMed  Google Scholar 

  119. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice[J]. Development 119(4):1093–1105

    Article  CAS  PubMed  Google Scholar 

  120. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization[J]. Circ Res 97(11):1093–1107

    Article  CAS  PubMed  Google Scholar 

  121. Senger DR, Claffey KP, Benes JE et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins[J]. Proc Natl Acad Sci U S A 94(25):13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu Y, Senger DR (2004) Matrix-specific activation of src and rho initiates capillary morphogenesis of endothelial cells[J]. FASEB J 18(3):457–468

    Article  CAS  PubMed  Google Scholar 

  123. Dowling J, Yu QC, Fuchs E (1996) Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival[J]. J Cell Biol 134(2):559–572

    Article  CAS  PubMed  Google Scholar 

  124. Nikolopoulos SN, Blaikie P, Yoshioka T et al (2004) Integrin beta4 signaling promotes tumor angiogenesis[J]. Cancer Cell 6(5):471–483

    Article  CAS  PubMed  Google Scholar 

  125. Ito K, Sakamoto N, Ohashi T et al (2007) Effects of frequency of pulsatile flow on morphology and integrin expression of vascular endothelial cells[J]. Technol Health Care 15(2):91–101

    Article  PubMed  Google Scholar 

  126. Himburg HA, Dowd SE, Friedman MH (2007) Frequency-dependent response of the vascular endothelium to pulsatile shear stress[J]. Am J Physiol Heart Circ Physiol 293(1):H645–H653

    Article  CAS  PubMed  Google Scholar 

  127. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by rho and rac but not Cdc42 or PI 3-kinases[J]. J Cell Biol 161(2):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology[J]. Nature 420(6916):629–635

    Article  CAS  PubMed  Google Scholar 

  129. Tzima E, Del PM, Kiosses WB et al (2002) Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression[J]. EMBO J 21(24):6791–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tzima E, Kiosses WB, Del PM et al (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress[J]. J Biol Chem 278(33):31020–31023

    Article  CAS  PubMed  Google Scholar 

  131. Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow[J]. Circ Res 98(2):245–253

    Article  CAS  PubMed  Google Scholar 

  132. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress[J]. Circ Res 91(9):769–775

    Article  CAS  PubMed  Google Scholar 

  133. Summermatter S, Mainieri D, Russell AP et al (2008) Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase[J]. FASEB J 22(3):774–785

    Article  CAS  PubMed  Google Scholar 

  134. Goldfinger LE, Tzima E, Stockton R et al (2008) Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment[J]. Circ Res 103(2):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Butler PJ, Norwich G, Weinbaum S et al (2001) Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity[J]. Am J Physiol Cell Physiol 280(4):C962–C969

    Article  CAS  PubMed  Google Scholar 

  136. Del PM, Alderson NB, Kiosses WB et al (2004) Integrins regulate rac targeting by internalization of membrane domains[J]. Science 303(5659):839–842

    Article  Google Scholar 

  137. Wu Y, Zhang K, Seong J et al (2016) In-situ coupling between kinase activities and protein dynamics within single focal adhesions[J]. Sci Rep 6:29377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liao X, Lu S, Zhuo Y et al (2011) Bone physiology, Biomaterial and the Effect of Mechanical/Physical Microenvironment on MSC Osteogenesis: a tribute to Shu Chien’s 80th Birthday[J]. Cell Mol Bioeng 4(4):579–590

    Article  CAS  PubMed  Google Scholar 

  139. Kohn JC, Lampi MC, Reinhart-King CA (2015) Age-related vascular stiffening: causes and consequences[J]. Front Genet 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  140. Byfield FJ, Reen RK, Shentu TP et al (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D[J]. J Biomech 42(8):1114–1119

    Article  PubMed  PubMed Central  Google Scholar 

  141. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate[J]. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  142. Jalali S, Tafazzoli-Shadpour M, Haghighipour N et al (2015) Regulation of endothelial cell adherence and Elastic Modulus by substrate Stiffness[J]. Cell Commun Adhes 22(2–6):79–89

    Article  CAS  PubMed  Google Scholar 

  143. Yi B, Shen Y, Tang H et al (2020) Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells[J]. Acta Biomater 108:237–249

    Article  CAS  PubMed  Google Scholar 

  144. Yeh YC, Ling JY, Chen WC et al (2017) Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin[J]. Sci Rep 7(1):15008

    Article  PubMed  PubMed Central  Google Scholar 

  145. Le Master E, Ahn SJ, Levitan I (2020) Mechanisms of endothelial stiffening in dyslipidemia and aging: oxidized lipids and shear stress[J]. Curr Top Membr 86:185–215

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gavara N, Chadwick RS (2016) Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging[J]. Biomech Model Mechanobiol 15(3):511–523

    Article  PubMed  Google Scholar 

  147. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate[J]. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  148. Avizienyte E, Frame MC (2005) Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition[J]. Curr Opin Cell Biol 17(5):542–547

    Article  CAS  PubMed  Google Scholar 

  149. Sackmann E (2015) How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells[J]. Biochim Biophys Acta 1853(11 Pt B):3132–3142

    Article  CAS  PubMed  Google Scholar 

  150. Wang Y, Shyy JY, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing[J]. Annu Rev Biomed Eng 10:1–38

    Article  PubMed  Google Scholar 

  151. Wang Y, Botvinick EL, Zhao Y et al (2005) Visualizing the mechanical activation of Src[J]. Nature 434(7036):1040–1045

    Article  CAS  PubMed  Google Scholar 

  152. Sun J, Lei L, Tsai CM et al (2017) Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions[J]. Nat Commun 8(1):477

    Article  PubMed  PubMed Central  Google Scholar 

  153. Liu B, Lu S, Hu YL et al (2014) RhoA and membrane fluidity mediates the spatially polarized Src/FAK activation in response to shear stress[J]. Sci Rep 4:7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li J, Wang S, Li Y et al (2020) miRNA-mediated macrophage behaviors responding to matrix stiffness and ox-LDL[J]. J Cell Physiol 235(9):6139–6153

    Article  CAS  PubMed  Google Scholar 

  155. Yan W, Li T, Yin T et al (2020) M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation[J]. Theranostics 10(23):10712–10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang Y, Shi R, Zhai R et al (2022) Matrix stiffness regulates macrophage polarization in atherosclerosis[J]. Pharmacol Res 179:106236

    Article  CAS  PubMed  Google Scholar 

  157. Sridharan R, Cavanagh B, Cameron AR et al (2019) Material stiffness influences the polarization state, function and migration mode of macrophages[J]. Acta Biomater 89:47–59

    Article  CAS  PubMed  Google Scholar 

  158. Sihombing M, Safitri M, Zhou T et al (2021) Unexpected role of Nonimmune cells: amateur Phagocytes[J]. DNA Cell Biol 40(2):157–171

    Article  CAS  PubMed  Google Scholar 

  159. Grutzendler J, Murikinati S, Hiner B et al (2014) Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation[J]. Sci Transl Med 6(226):226r–231r

    Article  Google Scholar 

  160. Lam CK, Yoo T, Hiner B et al (2010) Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization[J]. Nature 465(7297):478–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dini L, Lentini A, Diez GD et al (1995) Phagocytosis of apoptotic bodies by liver endothelial cells[J]. J Cell Sci 108(Pt 3):967–973

    Article  CAS  PubMed  Google Scholar 

  162. Steffan AM, Gendrault JL, McCuskey RS et al (1986) Phagocytosis, an unrecognized property of murine endothelial liver cells[J]. Hepatology 6(5):830–836

    Article  CAS  PubMed  Google Scholar 

  163. Nakaya M, Watari K, Tajima M et al (2017) Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction[J]. J Clin Invest 127(1):383–401

    Article  PubMed  Google Scholar 

  164. Wang Y, Botvinick EL, Zhao Y et al (2005) Visualizing the mechanical activation of Src[J]. Nature 434(7036):1040–1045

    Article  CAS  PubMed  Google Scholar 

  165. Seong J, Tajik A, Sun J et al (2013) Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins[J]. Proc Natl Acad Sci U S A 110(48):19372–19377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Key Foundation of China (Project no. 12032007), Chongqing Talents (cstc2022ycjh-bgzxm0166), the Natural Science Foundation of Chongqing in China (cstc2020jcyj-bsh0024, cstc2019jcyj-zdxmX0028).

Author information

Authors and Affiliations

Authors

Contributions

ZX, YC, YW, WH and WX collect the related literature materials. ZX wrote the manuscript. GW, XL and TZ provided ideas and designed the overall framework of the article.

Corresponding authors

Correspondence to Tao Zhang or Guixue Wang.

Ethics declarations

Competing Interest

Author ZX, Author YC, Author YW, Author WX, Author WH, Author TZ, Author XL and Author GW declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Chen, Y., Wang, Y. et al. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 50, 7027–7041 (2023). https://doi.org/10.1007/s11033-023-08502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08502-5

Keywords