Abstract
Cyclin D1 represents a key molecule in the regulation of cell cycle. CCND1 G870A (rs603965) polymorphism has drawn considerable attention as the A allele may generate a variant splice product with possible oncogenic actions. A meta-analysis examining the association between CCND1 G870A polymorphism and breast cancer risk was performed. Separate analyses on Caucasian and Chinese populations were also implemented. Eligible articles were identified for the period up to July 2010. Pooled odds ratios (OR) were appropriately derived from fixed-effects or random-effects models. Sensitivity analysis excluding studies whose genotype frequencies in controls significantly deviated from Hardy–Weinberg Equilibrium (HWE) was performed. Nine case–control studies on Caucasians (7,304 cases and 8,149 controls) and four case–control studies on Chinese (2,607 cases and 3,022 controls) were eligible. At the overall analysis the A allele seemed to be associated with elevated breast cancer risk; the effect seemed to be confined to homozygous carriers (pooled OR = 1.091, 95% CI: 1.008–1.179, P = 0.030, fixed effects) as heterozygous carriers did not exhibit significantly elevated breast cancer risk. No statistically significant associations were demonstrated in Caucasians. On the other hand, Chinese AA carriers exhibited marginally elevated breast cancer risk (pooled OR = 1.144, 95% CI: 0.984–1.329, P = 0.080, fixed effects). Nevertheless, the controls in two out of the four Chinese studies deviated from HWE. In conclusion, this meta-analysis suggests that the A allele of the CCND1 G870A polymorphism may confer additional breast cancer risk when it comes to homozygosity and Chinese populations. The need for additional, methodologically sound studies on Chinese populations seems warranted.
Similar content being viewed by others
References
Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25:1620–1628
Herber B, Truss M, Beato M, Muller R (1994) Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9:1295–1304
Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059–1065
Roy PG, Thompson AM (2006) Cyclin D1 and breast cancer. Breast 15:718–727
Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL (1998) c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 18:4499–4508
Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12:3488–3498
Bigoni R, Negrini M, Veronese ML, Cuneo A, Castoldi GL, Croce CM (1996) Characterization of t(11;14) translocation in mantle cell lymphoma by fluorescent in situ hybridization. Oncogene 13:797–802
Simpson JF, Quan DE, O’Malley F, Odom-Maryon T, Clarke PE (1997) Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. Am J Pathol 151:161–168
Gillett CE, Lee AH, Millis RR, Barnes DM (1998) Cyclin D1 and associated proteins in mammary ductal carcinoma in situ and atypical ductal hyperplasia. J Pathol 184:396–400
Dongsong N, Zhou JY (2010) FISH is more sensitive than southern analysis at identifying increased levels of cyclin D1 gene amplified in breast cancer cell lines. Mol Biol Rep 37:3473–3480
Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J (1995) Alternate splicing produces a novel cyclin D1 transcript. Oncogene 11:1005–1011
Wu J, Wu SH, Bollig A, Thakur A, Liao DJ (2009) Identification of the cyclin D1b mRNA variant in mouse. Mol Biol Rep 36:953–957
Lu F, Gladden AB, Diehl JA (2003) An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res 63:7056–7061
Zhu Y, Wang J, He Q, Zhang JQ (2010) Association of p53 codon 72 polymorphism with prostate cancer: a meta-analysis. Mol Biol Rep. doi:10.1007/s11033-010-0269-x
Li L, Huang X, Huo K (2010) IGFBP3 polymorphisms and risk of cancer: a meta-analysis. Mol Biol Rep 37:127–140
Mao C, Liao RY, Qiu LX, Wang XW, Ding H, Chen Q (2010) BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis. Mol Biol Rep. doi:10.1007/s11033-010-0351-4
Liao RY, Mao C, Qiu LX, Ding H, Chen Q, Pan HF (2010) TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls. Mol Biol Rep 37:3227–3232
Li C, Jiang Z, Liu X (2010) XPD Lys(751)Gln and Asp (312)Asn polymorphisms and bladder cancer risk: a meta-analysis. Mol Biol Rep 37:301–309
Xu B, Niu XB, Wang ZD, Cheng W, Tong N, Mi YY, Min ZC, Tao J, Li PC, Zhang W, Wu HF, Zhang ZD, Wang ZJ, Hua LX, Feng NH, Wang XR (2010) IL-6-174G>C polymorphism and cancer risk: a meta-analysis involving 29,377 cases and 37,739 controls. Mol Biol Rep. doi:10.1007/s11033-010-0399-1
Zhu W, Wei BB, Shan X, Liu P (2010) 765G>C and 8473T>C polymorphisms of COX-2 and cancer risk: a meta-analysis based on 33 case–control studies. Mol Biol Rep 37:277–288
Zhang R, Xu G, Chen W, Zhang W (2010) Genetic polymorphisms of glutathione S-transferase M1 and bladder cancer risk: a meta-analysis of 26 studies. Mol Biol Rep. doi:10.1007/s11033-010-0386-6
Lu D, Yu X, Du Y (2010) Meta-analyses of the effect of cytochrome P450 2E1 gene polymorphism on the risk of head and neck cancer. Mol Biol Rep. doi:10.1007/s11033-010-0375-9
Qiu LX, Zhang J, Li WH, Zhang QL, Yu H, Wang BY, Wang LP, Wang JL, Wang HJ, Liu XJ, Luo ZG, Wu XH (2010) Lack of association between methylenetetrahydrofolate reductase gene A1298C polymorphism and breast cancer susceptibility. Mol Biol Rep. doi:10.1007/s11033-010-0361-2
Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H (2008) Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomark Prev 17:2773–2781
Lu C, Dong J, Ma H, Jin G, Hu Z, Peng Y, Guo X, Wang X, Shen H (2009) CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 116:571–575
Ceschi M, Sun CL, Van Den Berg D, Koh WP, Yu MC, Probst-Hensch N (2005) The effect of cyclin D1 (CCND1) G870A-polymorphism on breast cancer risk is modified by oxidative stress among Chinese women in Singapore. Carcinogenesis 26:1457–1464
Forsti A, Angelini S, Festa F, Sanyal S, Zhang Z, Grzybowska E, Pamula J, Pekala W, Zientek H, Hemminki K, Kumar R (2004) Single nucleotide polymorphisms in breast cancer. Oncol Rep 11:917–922
Grieu F, Malaney S, Ward R, Joseph D, Iacopetta B (2003) Lack of association between CCND1 G870A polymorphism and the risk of breast and colorectal cancers. Anticancer Res 23:4257–4259
Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Weitzer W, Leithner A, Samonigg H (2003) The 870G>A polymorphism of the cyclin D1 gene is not associated with breast cancer. Breast Cancer Res Treat 82:165–168
Onay UV, Aaltonen K, Briollais L, Knight JA, Pabalan N, Kilpivaara O, Andrulis IL, Blomqvist C, Nevanlinna H, Ozcelik H (2008) Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk. BMC Cancer 8:6
Shu XO, Moore DB, Cai Q, Cheng J, Wen W, Pierce L, Cai H, Gao YT, Zheng W (2005) Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomark Prev 14:91–97
Yu CP, Yu JC, Sun CA, Tzao C, Ho JY, Yen AM (2008) Tumor susceptibility and prognosis of breast cancer associated with the G870A polymorphism of CCND1. Breast Cancer Res Treat 107:95–102
Driver KE, Song H, Lesueur F, Ahmed S, Barbosa-Morais NL, Tyrer JP, Ponder BA, Easton DF, Pharoah PD, Dunning AM (2008) Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 29:333–341
Justenhoven C, Pierl CB, Haas S, Fischer HP, Hamann U, Baisch C, Harth V, Spickenheuer A, Rabstein S, Vollmert C, Illig T, Pesch B, Bruning T, Dippon J, Ko YD, Brauch H (2009) Polymorphic loci of E2F2, CCND1 and CCND3 are associated with HER2 status of breast tumors. Int J Cancer 124:2077–2081
Millar EK, Dean JL, McNeil CM, O’Toole SA, Henshall SM, Tran T, Lin J, Quong A, Comstock CE, Witkiewicz A, Musgrove EA, Rui H, Lemarchand L, Setiawan VW, Haiman CA, Knudsen KE, Sutherland RL, Knudsen ES (2009) Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene 28:1812–1820
Naidu R, Yip CH, Taib NA (2008) Polymorphisms of HER2 Ile655Val and cyclin D1 (CCND1) G870A are not associated with breast cancer risk but polymorphic allele of HER2 is associated with nodal metastases. Neoplasma 55:87–95
Yaylim-Eraltan I, Ergen A, Gormus U, Arikan S, Kucucuk S, Sahin O, Yigit N, Yildiz Y, Isbir T (2009) Breast cancer and cyclin D1 gene polymorphism in Turkish women. In Vivo 23:767–772
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62:e1–e34
Economopoulos KP, Sergentanis TN (2010) GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer 46:1617–1631
Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:545–551
Economopoulos KP, Sergentanis TN (2010) XRCC3 Thr241Met polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:439–443
Economopoulos KP, Sergentanis TN (2010) Differential effects of MDM2 SNP309 polymorphism on breast cancer risk along with race: a meta-analysis. Breast Cancer Res Treat 120:211–216
Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:459–469
Sergentanis TN, Economopoulos KP (2010) GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:195–202
Sergentanis TN, Economopoulos KP (2010) Association of two CASP8 polymorphisms with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 120:229–234
Cavalli-Sforza LL, Piazza A, Menozzi P, Mountain J (1988) Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc Natl Acad Sci USA 85:6002–6006
Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet 33 Suppl:266–275
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Br Med J 327:557–560
Higgins J, Green S (2008) Cochrane handbook for systematic reviews of interventions version 5.0.1. The Cochrane Collaboration. www.cochrane-handbook.org. Accessed 31 May 2010
Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634
Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Stat Med 24:1291–1306
Rohlfs RV, Weir BS (2008) Distributions of Hardy–Weinberg equilibrium test statistics. Genetics 180:1609–1616
Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874
Mavaddat N, Dunning AM, Ponder BA, Easton DF, Pharoah PD (2009) Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomark Prev 18:255–259
Azzato EM, Driver KE, Lesueur F, Shah M, Greenberg D, Easton DF, Teschendorff AE, Caldas C, Caporaso NE, Pharoah PD (2008) Effects of common germline genetic variation in cell cycle control genes on breast cancer survival: results from a population-based cohort. Breast Cancer Res 10:R47
Haiman CA, Garcia RR, Hsu C, Xia L, Ha H, Sheng X, Le Marchand L, Kolonel LN, Henderson BE, Stallcup MR, Greene GL, Press MF (2009) Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort. BMC Cancer 9:43
Onay VU, Briollais L, Knight JA, Shi E, Wang Y, Wells S, Li H, Rajendram I, Andrulis IL, Ozcelik H (2006) SNP–SNP interactions in breast cancer susceptibility. BMC Cancer 6:114
Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309
Yuan L, Gu X, Shao J, Wang M, Zhu Q, Zhang Z (2010) Cyclin D1 G870A polymorphism is associated with risk and clinicopathologic characteristics of bladder cancer. DNA Cell Biol 29:611–617
Ni J, Wang M, Fu S, Zhou D, Zhang Z, Han S (2010) CCND1 G870A polymorphism and cervical cancer risk: a case–control study and meta-analysis. J Cancer Res Clin Oncol. doi:10.1007/s00432-010-0904-x
Acknowledgments
None to report.
Conflicts of interest
The authors declare that there are no conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sergentanis, T.N., Economopoulos, K.P. Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep 38, 4955–4963 (2011). https://doi.org/10.1007/s11033-010-0639-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-010-0639-4