Skip to main content

Advertisement

Log in

Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An increasing amount of experimental and epidemiological evidence implicates the involvement of oxygen derived radicals in the pathogenesis of cancer development. It is well known that chemical carcinogenesis is multistage process. Free radicals are found to be involved in both initiation and promotion of multistage carcinogenesis. Tamoxifen (TAM) is a potent antioxidant and a non-steroidal antiestrogen drug most used in the chemotherapy and chemoprevention of breast cancer. Besides its anticarcinogenic potential, it also produces some adverse toxic side effects, while taken for a long time. In order to minimise the side effects and to improve the antioxidant efficacy of tamoxifen, coenzyme Q10 (CoQ10) was added. Hence the present study was designed to investigate the combined efficacy of TAM along with CoQ10 in 7, 12 dimethyl benz(a)anthracene (DMBA) induced peroxidative damage in rat mammary carcinoma. The experimental setup comprised of one control and five experimental groups and it was carried out in adult female Sprague-Dawley rats. Mammary carcinoma was induced by oral administration of DMBA (25 mg kg−1 body wt) and the treatment was started by the oral administration of TAM (10 mg kg−1 body wt day−1) and CoQ10 (40 mg kg−1 body wt day−1) dissolved in olive oil and continued for 28 days. Rats induced with DMBA showed a decline in the thiol capacity of the cell accompanied by high malondialdehyde content levels along with lowered activities of antioxidant status (superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione). In contrast, glutathione metabolising enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione-S-transferase) were increased significantly in chemically induced carcinoma bearing rats. Administration of TAM along with CoQ10 restored the activities to a significant level thereby preventing cancer cell proliferation. This study highlights the increased antioxidant enzyme activities in relation to the susceptibility of cells to carcinogenic agents and the response of tumour cells to the chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D: Oxygen radicals and human disease. Ann Intern Med 107: 526–545, 1987

    CAS  PubMed  Google Scholar 

  2. Troll W, Frenkel K, Teebor G: Free oxygen radicals necessary contributions to tumor promotion and carcinogenesis. In: H. Fukiki (ed). Cellular Interactions by Environmental Tumor Promoters. VNU Science Press, Utrecht, 1984, pp 207–210

    Google Scholar 

  3. Cerutti PA: Prooxidant states and tumor promotion. Science 227: 375–381, 1985

    CAS  PubMed  Google Scholar 

  4. Sun Y: Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med 8: 583–599, 1990

    Article  CAS  PubMed  Google Scholar 

  5. Michaels ML, Cruz C, Grollman AP, Miller JH: Free Radicals: Mitochondria’s worst nightmare. Proc Natl Acad Sci (USA) 89: 7022–7025, 1992

    CAS  Google Scholar 

  6. Halliwell B, Gutteridge JMC: Free radicals in biology and medicine. Clarendon Press, Oxford, 1985

    Google Scholar 

  7. Tisdales MJ : Biology of Cachexia. J Natl Cancer Inst 89: 1763–1773, 1997

    Article  PubMed  Google Scholar 

  8. McPherson K, Steel CM, Dixon JM: ABC of the breast diseases, breast cancer epidemiology, risk factors and genetics. Br Med J 321: 624–628, 2000

    CAS  Google Scholar 

  9. Parton M, Dowsett M, Smith I: Studies of apoptosis in breast cancer. Br Med J 322: 1528–1532, 2001

    CAS  Google Scholar 

  10. Rutqvist LE, Johansson H, Signomklao T, Johansson U, Fornande T, Wilking N: Adjuvant tamoxifen therapy for early stage breast cancer and second primary malignancies. J Natl Cancer Inst 87: 645–651, 1995

    CAS  PubMed  Google Scholar 

  11. Jordan VC: A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol 110: 507–517, 1993

    CAS  PubMed  Google Scholar 

  12. Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: An overview of the randomised trials. Lancet 351: 1451–1467, 1998

    Google Scholar 

  13. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Shiu E, Fore L, Wolmark N: Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90: 1371–1388, 1998

    Article  CAS  PubMed  Google Scholar 

  14. Han X, Liehr JG: Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res 52: 1360–1363, 1992

    CAS  PubMed  Google Scholar 

  15. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM: Endometrial cancer in tamoxifen treated breast cancer patients. J Natl Cancer Inst 86: 527–537, 1994

    CAS  PubMed  Google Scholar 

  16. Crane, F: The essential functions of coenzyme Q. Clinical Investigator 71: S55–S59, 1993

    CAS  PubMed  Google Scholar 

  17. Ernster L: Ubiquinol: An endogenous antioxidant in aerobic organisms. Clinical Investigator 71: S60–S65, 1993

    CAS  PubMed  Google Scholar 

  18. Lockwood K, Moesgaard S, Folkers K: Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10: Biochem Biophys Res Commun 199: 1504–1508, 1994

    Article  CAS  PubMed  Google Scholar 

  19. Lockwood K, Moesgaard S, Yamamoto T, Folkers, K: Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem Biophys Res Commun 212(1): 172–177, 1995

    Article  CAS  PubMed  Google Scholar 

  20. Sujatha V, Muthumanickam V, Rani G, Sachdanandam P: Effect of Semecarpus anacardium Linn. Nut extract on glucose metabolizing enzymes in experimentally induced mammary carcinoma in rats. J Pharm Pharmacol 51: 241, 1999

    Google Scholar 

  21. Geren RJ, Greenberg NH, McDonald MM, Schumacher AM: Protocols for screening chemical agents and natural products against animal tumours and other biological system. Cancer Chemother Rep 3: 103, 1972

    Google Scholar 

  22. Roberto LC, Edward WB, Jerry AP: Experimental immunotherapy of human breast carcinoma implanted in nude mice with a mixture of monoclonal antibodies against human milk fat globule components. Cancer Res 47: 532, 1987

    PubMed  Google Scholar 

  23. Devasagayam TPA: Lipid peroxidation in rat uterus. Biochim Biophys Acta 876: 507–514, 1986

    CAS  PubMed  Google Scholar 

  24. Marklund S, Marklund G: Involvement of superoxide anion radical in autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469–474, 1974

    CAS  PubMed  Google Scholar 

  25. Sinha AK: Colorimetric assay of catalase. Anal Biochem 47: 389–394, 1972

    CAS  PubMed  Google Scholar 

  26. Rotruck JT, Pope L, Ganther HE, Swanson AB, Hajeman, AG, Hoekstra WG, Selenium: Biochemical role as a component of glutathione purification and assay. Science 179: 588–590, 1973

    CAS  PubMed  Google Scholar 

  27. Moron MS, Despierre JW, Minnervik B: Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582: 67–78, 1979

    CAS  PubMed  Google Scholar 

  28. Habig WH, Pabst UJ, Jacob WB: Glutathione-S-transferase. J Biol Chem 249: 7130–7139, 1973

    Google Scholar 

  29. Staal GEJ, Visser J, Veeger C: Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185: 39–48, 1969

    CAS  PubMed  Google Scholar 

  30. Beutler E: Active transport of glutathione disulfide from erythrocytes. In: A. Larson, S. Orrenius, A. Holmgren, B. Mannerwik, (eds). Functions of Glutathione-Biochemical, Physiological, Toxicological and Clinical Aspects. Raven Press, New York, 1983, p 65

    Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AI, Randall RJ: Protein measurement with the Folin-phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  32. Beauchamp C, Fridovich I: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44: 276–287, 1971

    Article  CAS  Google Scholar 

  33. Chen CN, Pan SM: Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sin 37: 107–111, 1996

    CAS  Google Scholar 

  34. Woodbury W, Spencer AK, Stahmann MA: An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 443: 301–305, 1971

    Article  Google Scholar 

  35. Halliwell B, Gutteridge JMC: Role of free radicals and catalytic metal ions in human disease: An overview. Meth Enzymol 186: 1–85, 1989

    Google Scholar 

  36. Kensler TM, Taffe BG: Free radicals in tumour promotion. Free Rad Biol Med 2: 347–387, 1986

    CAS  Google Scholar 

  37. Troll W, Wiesner R: The role of oxygen radicals as a possible mechanism of tumor promotion. Ann Rev Pharmacol Toxicol 25: 509–528, 1985

    Article  CAS  Google Scholar 

  38. Ellis PA, Saccani-Jotti G, Clarke R, Johnston SR, Anderson E, Howell A, A’Hern R, Salter J, Detre S, Nicholson R, Robertson J, Smith IE, Dowsett M: Induction of apoptosis by tamoxifen and ICI 182780 in primary breast cancer. Int J Cancer 72: 608–613, 1997

    Article  CAS  PubMed  Google Scholar 

  39. Arteaga CL, Osborne CK. Growth factors as mediators of estro-gen/antiestrogen action in human breast cancer cells. In: M.E.Lippman, R.B. Dickson (eds). Regulatory Mechanisms in Breast Cancer: Advances in Cellular and Molecular Biology of Breast Cancer. Kluwer Academic, Boston,1991, pp 289–304

    Google Scholar 

  40. Okawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358, 1979

    CAS  PubMed  Google Scholar 

  41. Wang M, Dhingra K, Hittelman WN: Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast cancer tissue. Cancer Epi Biom Prev 5: 705–710, 1996

    CAS  Google Scholar 

  42. Caporaso N: The Molecular Epidemiology of Oxidative Damage to DNA and Cancer. J Natl Cancer Inst 95: 1263–1265, 2003

    CAS  PubMed  Google Scholar 

  43. Das UN: Cis-unsaturated fatty acids as potential anti-mutagenic, tumoricidal and anti-metastatic agents. Asia Pacific J Pharmacol 7: 305–327, 1992

    CAS  Google Scholar 

  44. Dianzani MU, Rossi MA: Lipid peroxidation in tumors. In: P. Pani, F. Feo, A. Columbano, E.S.A. Cagliari (eds), Recent Trends in Chemical Carcinogenesis. Cagliari, Italy, 1981, pp. 243–257.

  45. Diplock AT, Rice-Evans K, Burdon RH: Is there a significant role for lipid peroxidation in the causation of malignancy and for antioxidants. Cancer Prevent 54: 1952–1956, 1993

    Google Scholar 

  46. Rossi MA: Lipid peroxidation of hepatomas of different degree of deviation. Cell Biochem Funct 1: 49–54, 1983

    CAS  PubMed  Google Scholar 

  47. Thangaraju M, Vijayalakshmi T, Sachdanandam P: Effect of tamoxifen on lipid peroxide and antioxidative system in postmenopausal women with breast cancer. Cancer 74: 78–82, 1994

    CAS  PubMed  Google Scholar 

  48. Custodio JB, Dinis TC, Almeida LM, Madeira VM: Tamoxifen and hydroxytamoxifen as intramembraneous inhibitors of lipid peroxidation. Evidence for peroxyl radical scavenging activity. Biochem Pharmacol, 47: 1989–1998, 1994

    Article  CAS  PubMed  Google Scholar 

  49. Ernster L, Beyer RE: Antioxidant functions of coenzyme Q: Some biochemical and pathophysiological implications. Biomed Clin Aspects of CoQ10 6: 45–58, 1991

    CAS  Google Scholar 

  50. O’Brien PJ: Antioxidants and cancer. Molecular mechanism. In: D. Armstrong (ed). Free Radicals in Diagnostic Medicine. Plenum Press, New York, 1994, pp 215–239

    Google Scholar 

  51. Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin S, Yen H, Majima H, Hines J, St Clair DK: Overexpression of Manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res 61: 6082–6088, 2001

    CAS  PubMed  Google Scholar 

  52. Oberley LW, Buettner GR: Role of superoxide dismutase in cancer: A review. Cancer Res 39: 1141–1149, 1979

    CAS  PubMed  Google Scholar 

  53. Xu Y, Krishnan A, Wan XS, Majima H, Yeh CC, Ludewig G, Kasarskis EJ, St Clair DK: Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 18: 93–102, 1999

    Article  CAS  PubMed  Google Scholar 

  54. Zhong W, Oberley LW, Oberley TD, St Clair DK: Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene 14: 481–490, 1997

    Article  CAS  PubMed  Google Scholar 

  55. Daosukho C, Kiningham K, Kasarskis EJ, Ittarat W, St Clair DK: Tamoxifen enhancement of TNF-α induced MnSOD expression: Modulation of NF-κB dimerization. Oncogene 21: 3603–3610, 2002

    Article  CAS  PubMed  Google Scholar 

  56. Fridovich, I: Oxygen toxicity: A radical explanation. J Exp Biol 201: 1203–1209, 1998

    CAS  PubMed  Google Scholar 

  57. Ahmad S: Antioxidant mechanisms of enzymes and proteins. In: S. Ahmad (ed). Oxidative Stress and Antioxidant Defenses in Biology, Chapman & Hall, New York, 1995, pp 238–272

    Google Scholar 

  58. Murphy C, Fotsis T, Pantzar P, Adlercreutz H Martin F: Analysis of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen levels in cytosol and KCl-nuclear extracts of breast tumours from tamoxifen treated patients by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM). J Steroid Biochem 28: 609–618, 1987

    Article  CAS  PubMed  Google Scholar 

  59. Wiseman H, Laughton MJ Armsteinn HRV: The antioxidant action of tamoxifen and its metabolites. FEBS Lett 263: 192–194, 1990

    Article  PubMed  Google Scholar 

  60. Jolliet P, Simon N: Plasma Co-enzyme Q10 concentration in breast cancer: Prognosis and therapeutic consequence. Int J Clin Pharm Therapeut 36: 506–509, 1998

    CAS  Google Scholar 

  61. Meister A: Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208, 1988

    CAS  PubMed  Google Scholar 

  62. Meister A, Anderson M: Glutathione. Ann Rev Biochem 52: 711–760, 1983

    Article  CAS  PubMed  Google Scholar 

  63. Kirkman HN, Gaetani GF: Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci USA 81: 4343–4374, 1984

    CAS  PubMed  Google Scholar 

  64. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN: Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 73: 334–339, 1989

    CAS  PubMed  Google Scholar 

  65. Bray TM, Taylor CG: Tissue glutathione, nutrition and oxidative stress. Can J Physiol Pharmacol 71: 746–751, 1993

    CAS  PubMed  Google Scholar 

  66. Chandra RK, Kumari S: Effects of nutrition on the immune system. Nutrition 10: 207–210, 1994

    CAS  PubMed  Google Scholar 

  67. Folkers K, Shizukuishi S, Takemura K, Drzewoski J, Richardson P, Ellis J, Kuzell WC: Increase in levels of IgG in serum of patients treated with coenzyme Q10. Res Commun Chem Pathol Pharmacol 38(2): 335–338, 1982

    CAS  PubMed  Google Scholar 

  68. Leibau E, Wildenburg G, Walter RD, Henkle-Duhrsen K: A novel type of glutathione S-transferase in Onchocerca volvulus. Infect Immunol 62: 4762–4767, 1994

    Google Scholar 

  69. Jensson H, Eriksson LC, Mannervik B: Selective expression of glutathione transferase isoenzymes in chemically induced preneoplastic rat, hepatocyte nodules. FEBS Lett 187: 115–120, 1995

    Article  Google Scholar 

  70. Sato K, Satoh K, Hatayama I, Tsuchida S, Soma Y, Shiratori Y, Tateoka N, Inaba Y, Kitahara A: Placental glutathione S- transferase as a marker for neoplastic tissues. In: T.J. Mantle, C.B. Pickett, J.D. Hayes (eds). Glutathione S-transferase and carcinogenesis, New York, Taylor and Francis, 1987, pp 127–137

    Google Scholar 

  71. Di Ilio C, Sacchetta P, Boccio GD, Rovere GL, Federici G: Glutathione peroxidase, glutathione S-transferase and glutathione reductase activities in normal and neoplastic breast tissue. Cancer Res 44: 4137–4139, 1984

    CAS  PubMed  Google Scholar 

  72. Poulsen HS, Fredericksen P: Glucose-6-phosphate dehydrogenase activity in human breast cancer. Acta Pathol Microbiol Scand 89: 263–270, 1981

    CAS  Google Scholar 

  73. Bokun R, Bakotin J, Milasinovic D: Semiquantitative cytichemical estimation of glucose-6-phosphate dehydrogenase activity in benign diseases and carcinoma of breast. Acta Cytol 31: 249–252, 1987

    CAS  PubMed  Google Scholar 

  74. Cocco P: Does G6PD deficiency protect against cancer? A critical review. J Epidemiol Community Health 41: 89–93, 1987

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanadham Sachdanandam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perumal, S.S., Shanthi, P. & Sachdanandam, P. Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer. Mol Cell Biochem 273, 151–160 (2005). https://doi.org/10.1007/s11010-005-0325-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-0325-3

Keywords

Navigation