Abstract
We use elastic neutron scattering to demonstrate that a sharp increase in the mean-squared atomic displacements, commonly observed in hydrated proteins above 200 K and often referred to as the dynamical transition, is present in the hydrated state of both native and denatured lysozyme. A direct comparison of the native and denatured protein thus confirms that the presence of the transition in the mean-squared atomic displacements is not specific to biologically functional molecules.
Similar content being viewed by others
References
Parak, F., Formanek, H.: Study on vibration and crystal lattice fault of temperature factor in myoglobin by comparative Mossbauer absorption measurements with X-ray structure data. Acta Crystallogr. A 27, 573–578 (1971)
Keller, H., Debrunner, P.G.: Evidence for conformational and diffusional mean-square displacements in frozen aqueous-solution of oxymyoglobin. Phys. Rev. Lett. 45, 68–71 (1980)
Parak, F., Knapp, E.W., Kucheida, D.: Protein dynamics–Mossbauer–spectroscopy on deoxymyoglobin crystals. J. Mol. Biol. 161, 177–194 (1982)
Doster, W., Cusack, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron-scattering. Nature 337, 754–756 (1989)
Paciaroni, A., Cinelli, S., Cornicchi, E., De Francesco, A., Onori, G.: Fast fluctuations in protein powders: the role of hydration. Chem. Phys. Lett. 410, 400–403 (2005)
Cornicchi, E., Onori, G., Paciaroni, A.: Picosecond-time-scale fluctuations of proteins in glassy matrices: the role of viscosity. Phys. Rev. Lett. 95, 158104 (2005)
Roh, J.H., Novikov, V.N., Gregory, R.B., Curtis, J.E., Chowdhuri, Z., Sokolov, A.P.: Onsets of anharmonicity in protein dynamics. Phys. Rev. Lett. 95, 038101 (2005)
Roh, J.H., Curtis, J.E., Azzam, S., Novikov, V.N., Peral, I., Chowdhuri, Z., Gregory, R.B., Sokolov, A.P.: Influence of hydration on the dynamics of lysozyme. Biophys. J. 91, 2573–2588 (2006)
Cornicchi, E., Marconi, M., Onori, G., Paciaroni, A.: Controlling the protein dynamical transition with sugar-based bioprotectant matrices: a neutron scattering study. Biophys. J. 91, 289–297 (2006)
Caliskan, G., Briber, R.M., Thirumalai, D., Garcia-Sakai, V., Woodson, S.A., Sokolov, A.P.: Dynamic transition in tRNA is solvent induced. J. Am. Chem. Soc. 128, 32–33 (2006)
Cornicchi, E., Capponi, S., Marconi, M., Onori, G., Paciaroni, A.: Temperature dependence of fast fluctuations in single- and double-stranded DNA molecules: a neutron scattering investigation. Philos. Mag. 87, 509–515 (2007)
Roh, J.H., Briber, R.M., Damjanovic, A., Thirumalai, D., Woodson, S.A., Sokolov, A.P.: Dynamics of tRNA at different levels of hydration. Biophys. J. 96, 2755–2762 (2009)
Daniel, R.M., Smith, J.C., Ferrand, M., Hery, S., Dunn, R., Finney, J.L.: Enzyme activity below the dynamical transition at 220 K. Biophys. J. 75, 2504–2507 (1998)
Daniel, R.M., Finney, J.L., Reat, V., Dunn, R., Ferrand, M., Smith, J.C.: Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution. Biophys. J. 77, 2184–2190 (1999)
Sokolov, A.P., Grimm, H., Kisliuk, A., Dianoux, A.J.: Slow relaxation process in DNA. J. Biol. Phys. 27, 313–327 (2001)
Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Parak, F.G.: Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA 99, 16047–16051 (2002)
Daniel, R.M., Finney, J.M., Smith, J.C.: The dynamic transition in proteins may have a simple explanation. Faraday Discuss. 122, 163–169 (2002)
Becker, T., Hayward, J.A., Finney, J.L., Daniel, R.M., Smith, J.C.: Neutron frequency windows and the protein dynamical transition. Biophys. J. 87, 1436–1444 (2004)
Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Young, R.D.: Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 101, 14408–14413 (2004)
Chen, S.H., Liu, L., Fratini, E., Baglioni, P., Faraone, A., Mamontov, E.: Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc. Natl. Acad. Sci. USA 103, 9012–9016 (2006)
Kumar, P., Yan, Z., Xu, L., Mazza, M.G., Buldyrev, S.V., Chen, S.H., Sastry, S., Stanley, H.E.: Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett. 97, 177802 (2006)
Chen, S.H., Liu, L., Chu, X., Zhang, Y., Fratini, E., Baglioni, P., Faraone, A., Mamontov, E.: Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. J. Chem. Phys. 125, 171103 (2006)
Chu, X.Q., Fratini, E., Baglioni, P., Faraone, A., Chen, S.H.: Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Phys. Rev. E 77, 011908 (2008)
Khodadadi, S., Pawlus, S., Roh, J.H., Garcia-Sakai, V., Mamontov, E., Sokolov, A.P.: The origin of the dynamic transition in proteins. J. Chem. Phys. 128, 195106 (2008)
Khodadadi, S., Pawlus, S., Sokolov, A.P.: Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J. Phys. Chem. B 112, 14273–14280 (2008)
Chen, G., Fenimore, P.W., Frauenfelder, H., Mezei, F., Swenson, J., Young, R.D.: Protein fluctuations explored by inelastic neutron scattering and dielectric relaxation spectroscopy. Philos. Mag. 88, 3877–3883 (2008)
Sokolov, A.P., Roh, J.H., Mamontov, E., Garcia-Sakai, V.: Role of hydration water in dynamics of biological macromolecules. Chem. Phys. 345, 212–218 (2008)
Frauenfelder, H., Ghen, G., Berendzen, J., Fenimore, P.W., Jansson, H., McMahon, B.H., Stroe, I.R., Swenson, J., Young, R.D.: A unified model of protein dynamics. Proc. Natl. Acad. Sci. USA 106, 5129–5134 (2009)
Parak, F., Knapp, E.W.: A consistent picture of protein dynamics. Proc. Natl. Acad. Sci. USA 81, 7088–7092 (1984)
Rasmussen, B.F., Stock, A.M., Ringe, D., Petsko, G.A.: Crystalline ribonuclease-A loses function below the dynamic transition at 220K. Nature 357, 423–424 (1992)
Ferrand, M., Dianoux, A.J., Petry, W., Zaccai, G.: Thermal motions and function of bacteriorhodopsin in purple membranes—effects of temperature and hydration studied by neutron-scattering. Proc. Natl. Acad. Sci. USA 90, 9668–9672 (1993)
Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, G.U.: Ligand binding and conformational motions in myoglobin. Nature 404, 205–208 (2000)
Dunn, R.V., Reat, V., Finney, J., Ferrand, M., Smith, J.C., Daniel, R.M.: Enzyme activity and dynamics: xylanase activity in the absence of fast anharmonic dynamics. Biochem. J. 346, 355–358 (2000)
Bragger, J.M., Dunn, R.V., Daniel, R.M.: Enzyme activity down to −100 degrees C. Biochim. Biophys. Acta 1480, 278–282 (2000)
He, Y.F., Ku, P.I., Knab, J.R., Chen, J.Y., Markelz, A.G.: Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 101, 178103 (2008)
Mamontov, E., Zamponi, M., Hammons, S., Keener, W.S., Hagen, M., Herwig, K.W.: BASIS: A new backscattering spectrometer at the SNS. Neutron News 19, 22–24 (2008)
Mamontov, E., Luo, H., Dai, S.: Proton dynamics in N,N,Nʹ,Nʹ-Tetramethylguanidinium Bis(perfluoroethylsulfonyl)imide protic ionic liquid probed by quasielastic neutron scattering. J. Phys. Chem. B 113, 159–169 (2009)
Provencher, S.W., Glockner, J.: Estimation of globular protein secondary structure from circular dichroism. Biochem. 20, 33–37 (1981)
Van Stokkum, I.H.M., Spoelder, H.J.W., Bloemendal, M., Van Grondelle, R., Groen, F.C.A.: Estimation of protein secondary structure and error analysis from CD spectra. Anal. Biochem. 191, 110–118 (1990)
Whitmore, L., Wallace, B.A.: Protein secondary structure analysis from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008)
Bée, M.: Quasielastic Neutron Scattering. Adam Hilger, Philadelphia (1988)
Nakagawa, H., Joti, Y., Kitao, A., Kataoka, M.: Hydration affects both harmonic and anharmonic nature of protein dynamics. Biophys. J. 95, 2916–2923 (2008)
Receveur, V., Calmettes, P., Smith, J.C., Desmadril, M., Coddens, G., Durand, D.: Picosecond dynamical changes on denaturation of yeast phosphoglycerate kinase revealed by quasielastic neutron scattering. Proteins: Struct. Funct. Bioinformatics 28, 380–387 (1997)
Zaccai, G.: How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000)
Parak, F.G.: Physical aspects of protein dynamics. Rep. Prog. Phys. 66, 103–129 (2003)
Frauenfelder, H., Fenimore, P.W., Chen, G., McMahon, B.H.: Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 103, 15469–15472 (2006)
Tsai, A.M., Neumann, D.A., Bell, L.N.: Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys. J. 79, 2728–2732 (2000)
Tarek, M., Tobias, D.J.: Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys. Rev. Lett. 88, 138101 (2002)
Tournier, A.L., Xu, J., Smith, J.C.: Translational hydration water dynamics drives the protein glass transition. Biophys. J. 85, 1871–1875 (2003)
Doster, W.: The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008)
Mamontov, E., Vlcek, L., Wesolowski, D.J., Cummings, P.T., Rosenqvist, J., Wang, W., Cole, D.R., Anovitz, L.M., Gasparovic, G.: Suppression of the dynamic transition in surface water at low hydration levels: a study of water on rutile. Phys. Rev. E 79, 051504 (2009)
Acknowledgements
The authors are thankful to K. W. Herwig and C. Hoffmann for critical reading of the manuscript, and K. L. Weiss for useful technical discussions. This work was supported by the US Department of Energy Basic Energy Sciences and the Office of Biological and Environmental Research, using facilities supported by Oak Ridge National Laboratory, and managed by UT-Battelle, LLC, for the US DOE under Contract No. DE-AC05-00OR22725.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mamontov, E., O’Neill, H. & Zhang, Q. Mean-squared atomic displacements in hydrated lysozyme, native and denatured. J Biol Phys 36, 291–297 (2010). https://doi.org/10.1007/s10867-009-9184-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10867-009-9184-6