Skip to main content

Empirical isotropic chemical shift surfaces

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A list of proteins is given for which spatial structures, with a resolution better than 2.5 Å, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For–(l-Ala) n –NH2, with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the \(^{13}\hbox{C}^{\alpha}\) ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (αD), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical \(^{13}\hbox{C}^{\alpha}\)\(^{1}\hbox{H}^{\alpha}\) ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098

    Article  ADS  Google Scholar 

  • Beger RD, Bolton PH (1997) Protein phi and psi dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. J Biomol NMR 10:129–142

    Article  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) Protein data bank – computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  Google Scholar 

  • Braun D, Wider G, Wuthrich K (1994) Sequence-corrected N-15 random coil chemical-shifts. J Am Chem Soc 116:8466–8469

    Article  Google Scholar 

  • Czinki E, Császár AG, Perczel A (2003) A theoretical case study of type I and type II beta-turns. Chem-Eur J 9:1182–1191

    Article  Google Scholar 

  • Czinki E, Császár AG (2004) On NMR isotropic chemical shift surfaces of peptide models. J Mol Struct (THEOCHEM) 675:107–116

    Google Scholar 

  • Czinki E, Császár AG, Magyarfalvi G, Schreiner PR, Allen WD (2007) Secondary structures of peptides and proteins via NMR chemical-shielding anisotrophy (CSA) parameters. J Am Chem Soc 129:1568–1577

    Article  Google Scholar 

  • Dalgarno DC, Levine BA, Williams RJP (1983) Structural information from NMR secondary chemical-shifts of peptide Alpha-C-H protons in proteins. Biosci Rep 3:443–452

    Article  Google Scholar 

  • Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27:789–807

    Article  ADS  Google Scholar 

  • Frisch MJ et al (1998) Gaussian98, A11, Gaussian Inc., Pittsburgh, PA

  • Frisch MJ et al (2004) Gaussian03, Rev C02, Gaussian Inc., Wallingford, CT

  • Gronenborn AM, Clore GM (1994) Identification of N-terminal helix capping boxes by means of C-13 chemical shifts. J Biomol NMR 4:455–458

    Article  Google Scholar 

  • Helgaker T, Jaszunski M, Ruud K (1999) Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants. Chem Rev 99:293–352

    Article  Google Scholar 

  • Ho BK, Thomas A, Brasseur R (2003) Revisiting the Ramachandran plot: Hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Protein Sci 12:2508–2522

    Article  Google Scholar 

  • Hovmoller S, Zhou T, Ohlson T (2002) Conformations of amino acids in proteins. Acta Crystallogr Sect D – Biol Crystallogr 58:768–776

    Article  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1999) C-alpha and C-beta carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR 13:199–211

    Article  Google Scholar 

  • Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400

    Article  Google Scholar 

  • Le HB, Pearson JG, de Dios AC, Oldfield E (1995) Protein-structure refinement and prediction via NMR chemical shifts and quantum-chemistry. J Am Chem Soc 117:3800–3807

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation – Energy formula into a functional of the electron-density. Phys Rev B 37:785

    Article  ADS  Google Scholar 

  • Neuhaus D, Williamson M (1989) The nuclear overhauser effect in structural and conformational analysis. VCH, New York

    Google Scholar 

  • Ősapay K, Case DA (1991) A new analysis of proton chemical-shifts in proteins. J Am Chem Soc 113:9436–9444

    Article  Google Scholar 

  • Ősapay K, Case DA (1994) Analysis of proton chemical-shifts in regular secondary structures of proteins. J Biomol NMR 4:215–230

    Google Scholar 

  • Perczel A, Császár AG (2000) Toward direct determination of conformations of protein building units form multidimensional NMR experiments part I: A theoretical case study of For-Gly-NH2 and For-L-Ala-NH2. J Comp Chem 21:882–900

    Article  Google Scholar 

  • Perczel A, Császár AG (2001) Toward direct determination of conformations of protein building units form multidimensional NMR experiments part II: A theoretical case study of Formyl-L-Valine amide. Chem Eur J 7:1069–1083

    Article  Google Scholar 

  • Perczel A, Császár AG (2002) Toward direct determination of conformations of protein building units form multidimensional NMR experiments part III: A theoretical case study of For-L-Phe-NH2. Eur Phys J D 20:513–530

    Article  ADS  Google Scholar 

  • Perczel A, Füzéry AK, Császár AG (2003) Toward direct determination of conformations of protein building units form multidimensional NMR experiments part V: NMR chemical shielding analysis of N-formyl-serinamide, a model for polar side-chain containing peptides. J Comp Chem 24:1157–1171

    Article  Google Scholar 

  • Ramachandran G, Sasikekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–437

    Google Scholar 

  • Redfield C, Dobson CM (1990) H-1-NMR studies of human lysozyme – Spectral assignment and comparison with hen lysozyme. Biochemistry 29:7201–7214

    Article  Google Scholar 

  • Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  ADS  Google Scholar 

  • Seavey BR, Farr EA, Westler WM, Markley JL (1991) A relational database for sequence specific protein NMR data. J Biomol NMR 1:217

    Article  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and C-alpha and C-beta C-13 nuclear-magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Szilágyi L (1995) Chemical-shifts in proteins come of age. Progr Nucl Magn Res Spectr 27:325–443

    Article  Google Scholar 

  • Szilágyi L, Jardetzky O (1989) Alpha-proton chemical-shifts and secondary structure in proteins. J Magn Reson 83:441–449

    Google Scholar 

  • Sun HH, Sanders LK, Oldfield E (2002) Carbon-13 NMR shielding in the twenty common amino acids: Comparisons with experimental results in proteins. J Am Chem Soc 124:5486–5495

    Article  Google Scholar 

  • Vlasov PK, Kilosanidze GT, Ukrainskii DL, Kuzmin AV, Tumanyan VG, Esipova NG (2001) Left-handed conformation of poly-L-proline II type in globular proteins. Sequence specificity. Biofizika 46:573–576

    Google Scholar 

  • Wang YJ (2004) Secondary structural effects on protein NMR chemical shifts. J Biomol NMR 30:233–244

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear-magnetic resonance chemical-shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical-shift index – A fast and simple method for the assignment of protein secondary structure through NMR-spectroscopy. Biochemistry 31:1647–1651

    Article  Google Scholar 

  • Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Meth Enzymol 338:3–34

    Article  Google Scholar 

  • Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical-shift calculations. J Am Chem Soc 112:8251–8260

    Article  Google Scholar 

  • Xu XP, Case DA (2001) Automated prediction of N-15, C-13(alpha), C-13(beta) and C-13’ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333

    Article  Google Scholar 

  • Xu XP, Case DA (2002) Probing multiple effects on N-15, C-13 alpha, C-13 beta and C-13’ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423

    Article  Google Scholar 

  • Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett 419:285–289

    Article  Google Scholar 

  • Zhang HY, Neal S, Wishart DS (2003) RefDB: A database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

Download references

Acknowledgments

The work described has been supported by the Scientific Research Fund of Hungary (Grant No. OTKA T047185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila G. Császár.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2007_9161_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czinki, E., Császár, A.G. Empirical isotropic chemical shift surfaces. J Biomol NMR 38, 269–287 (2007). https://doi.org/10.1007/s10858-007-9161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9161-y

Keywords