Skip to main content

Advertisement

Identification of individual protein–ligand NOEs in the limit of intermediate exchange

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein–ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D 1H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein–ligand NOEs that allow calculation of initial complex structures, suitable for structure-based optimization of primary drug leads obtained from high-throughput screening. The method was applied to measure individual intermolecular NOEs between the anti-apoptotic protein Bcl-xL at 25 μM and a “first generation” small-molecule ligand, for which the spectrum is entirely broadened at stoichiometric concentrations. This approach is general and can also be used to characterize protein–protein or protein–nucleic-acid complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NMR:

nuclear magnetic resonance

NOE:

nuclear Overhauser effect

NOESY:

2D NOE spectroscopy

STD:

saturation transfer difference spectroscopy

SOS NMR:

structural information using Overhauser effects and selective labeling

NMR-DOC:

Nuclear Magnetic Resonance Docking of compounds

References

  • Arnett, K.L., Harrison, S.C. and Wiley, D.C. (2004) Proc. Natl. Acad. Sci. USA 101, 16268–16273.

    Article  ADS  Google Scholar 

  • Barda-Saad, M., Braiman, A., Titerence, R., Bunnell, S.C., Barr, V.A. and Samelson, L.E. (2005) Nat. Immunol. 6, 80–89.

    Article  Google Scholar 

  • Bunnell, S.C., Hong, D.I., Kardon, J.R., Yamazaki, T., McGlade, C.J., Barr, V.A. and Samelson, L.E. (2002) J. Cell Biol. 158, 1263–1275.

    Article  Google Scholar 

  • Chen, Y., Reizer, J., Saier, M.H. Jr., Fairbrother, W.J. and Wright, P.E. (1993) Biochemistry 32, 32–37.

    Article  Google Scholar 

  • Clore G.M. (2000) Proc. Natl. Acad. Sci. USA 97, 9021–9025.

    Article  ADS  Google Scholar 

  • Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T. and Yuan, J. (2001) Nat. Cell Biol. 3, 173–182.

    Article  Google Scholar 

  • Fahmy, A. and Wagner, G. (2002) J. Am. Chem. Soc. 124, 1241–1250.

    Article  Google Scholar 

  • Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. and Kay, L.E. (1999) J. Biomol. NMR 13, 369–374.

    Article  Google Scholar 

  • Gross, J.D., Gelev, V.M. and Wagner, G. (2003) J. Biomol. NMR 25, 235–242.

    Article  Google Scholar 

  • Gross, J.D., Moerke, N.J., von der Haar, T., Lugovskoy, A.A., Sachs, A.B., McCarthy, J.E. and Wagner, G. (2003) Cell 115, 739–750.

    Article  Google Scholar 

  • Hajduk, P.J., Mack, J.C., Olejniczak, E.T., Park, C., Dandliker, P.J. and Beutel, B.A. (2004) J. Am. Chem. Soc. 126, 2390–2398.

    Article  Google Scholar 

  • Ikura M., Bax A. (1992). J Am. Chem. Soc. 114: 2433–2440

    Article  Google Scholar 

  • Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Mei Ono, A. and Guntert, P. (2006) Nature 440, 52–57.

    Article  ADS  Google Scholar 

  • Kuntz, I.D., Meng, E.C. and Shoichet, B.K. (1994) Acc. Chem. Res. 27, 117–123.

    Article  Google Scholar 

  • Lugovskoy, A.A., Degterev, A.I., Fahmy, A.F., Zhou, P., Gross, J.D., Yuan, J. and Wagner, G. (2002) J. Am. Chem. Soc. 124, 1234–1240.

    Article  Google Scholar 

  • Marintchev, A. and Wagner, G. (2004) Q. Rev. Biophys. 37, 197–284.

    Article  Google Scholar 

  • Markus, M.A., Nakayama, T., Matsudaira, P. and Wagner G. (1994) Protein Sci. 3, 70–81.

    Article  Google Scholar 

  • Matsuo, H., Li, H., McGuire, A.M., Fletcher, C.M., Gingras, A.C., Sonenberg, N. and Wagner, G. (1997) Nat. Struct. Biol. 4, 717–724.

    Article  Google Scholar 

  • Matsuo, H., Walters, K.J., Teruya, K., Tanaka, T., Gasser, G.T., Lippard, S.J., Kyogoku, Y. and Wagner, G. (1999) J. Am. Chem. Soc. 121, 9903–9904.

    Article  Google Scholar 

  • Mayer, M. and Meyer, B. (1999) Angew. Chem. Int. Ed. Engl. 38, 17484–11788.

    Google Scholar 

  • Mayer, M. and Meyer, B. (2001) J. Am. Chem. Soc. 123, 6108–6117.

    Article  Google Scholar 

  • Medek, A., Hajduk, P.J., Mack, J. and Fesik, S.W. (2000) J. Am. Chem. Soc. 122, 1241–1242.

    Article  Google Scholar 

  • Medek, A., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (2000) J. Biomol. NMR. 18, 229–238.

    Article  Google Scholar 

  • Oberer, M., Marintchev, A. and Wagner, G. (2005) Genes Dev. 19, 2212–2223.

    Article  Google Scholar 

  • Otting, G., Senn, H., Wagner, G. and Wüthrich, K. (1986) J. Magn. Reson. 70, 500–505.

    Google Scholar 

  • Pellecchia, M., Meininger, D., Dong, Q., Chang, E., Jack, R. and Sem, D.S. (2002) J. Biomol. NMR. 22, 165–173.

    Article  Google Scholar 

  • Reibarkh, M., Malia, T. and Wagner, G. (2006) J. Am. Chem. Soc. (in press).

  • Roehrl, M.H., Kang, S., Aramburu, J., Wagner, G., Rao, A. and Hogan, P.G. (2004) Proc. Natl. Acad. Sci. USA 101, 7554–7559.

    Article  ADS  Google Scholar 

  • Roehrl, M.H., Wang, J.Y. and Wagner, G. (2004a) Biochemistry 43, 16056–16066.

    Article  Google Scholar 

  • Roehrl, M.H., Wang, J.Y. and Wagner, G. (2004b) Biochemistry 43, 16067–16075.

    Article  Google Scholar 

  • Rosen, M.K., Gardner, K.H., Willis, R.C., Parris, W.E., Pawson, T. and Kay, L.E. (1996) J. Mol. Biol. 263, 627–636.

    Article  Google Scholar 

  • Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., Thompson, C.B. and Fesik, S.W. (1997) Science 275, 983–986.

    Article  Google Scholar 

  • Schieborr, U., Vogtherr, M., Elshorst, B., Betz, M., Grimme, S., Pescatore, B., Langer, T., Saxena, K. and Schwalbe, H. (2005) Chembiochem. 6, 1891–1898.

    Article  Google Scholar 

  • Shimada, I. (2005) Methods Enzymol. 394, 483–506.

    Article  Google Scholar 

  • Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W. (1996) Science 274, 1531–1534.

    Article  ADS  Google Scholar 

  • Solomon, I. (1955) Phys. Rev. 99, 559–565.

    Article  ADS  Google Scholar 

  • Sun, Z.J., Kim, K.S., Wagner, G. and Reinherz, E.L. (2001) Cell 105, 913–923.

    Article  Google Scholar 

  • Sun, Z.Y., Dotsch, V., Kim, M., Li, J., Reinherz, E.L. and Wagner, G. (1999) Embo. J. 18, 2941–2949.

    Article  Google Scholar 

  • Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. and Shimada, I. (2000) Nat. Struct. Biol. 7, 220–223.

    Article  Google Scholar 

  • Torizawa, T., Shimizu, M., Taoka, M., Miyano, H. and Kainosho, M. (2004) J. Biomol. NMR. 30, 311–325.

    Article  Google Scholar 

  • Vinarov, D.A., Lytle, B.L., Peterson, F.C., Tyler, E.M., Volkman, B.F. and Markley, J.L. (2004) Nat. Methods 1, 149–153.

    Article  Google Scholar 

  • Wagner, G. and Wüthrich, K. (1979) J. Magn. Reson. 33, 675–680.

    Google Scholar 

  • Walters, K.J., Matsuo, H. and Wagner, G. (1996) J. Am. Chem. Soc. 119, 5958–5959.

    Article  Google Scholar 

  • Yokoyama, S. (2003) Curr. Opin. Chem. Biol. 7, 39–43.

    Article  Google Scholar 

Download references

Acknowledgment

We thank Dr. Vladimir Gelev for providing the precursors for the methyl-labeling experiments. This research was supported by NIH (Grants GM47467, GM075879 and EB002026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reibarkh, M., Malia, T.J., Hopkins, B.T. et al. Identification of individual protein–ligand NOEs in the limit of intermediate exchange. J Biomol NMR 36, 1–11 (2006). https://doi.org/10.1007/s10858-006-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9028-7

Keywords