Skip to main content

Advertisement

Log in

Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Thermo switchable magnetic hydrogels undoubtedly have a great potential for medical applications since they can behave as smart carriers able to transport bioactive molecules to a chosen part of the body and release them on demand via magneto-thermal activation. We report on the ability to modify the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAM) on demand from 32 °C to LCST ≥37 °C. This was achieved by the absorption of controlled amounts of magnetite nanoparticles on the polymer chains. We show, through the effect on cell viability, that the resulting magnetic PNIPAM is able to trap and to release bio-active molecules, such as cell growth factors. The activities of the released bio molecule are tested on human umbilical vein endothelial cells culture. We demonstrate that the LCST of the magnetic PNIPAM can be reached remotely via inductive heating with an alternating magnetic field. This approach on magnetic PNIPAM clearly supports appealing applications in safe biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rubio-Retama J, Zafeiropoulos NE, Serafinelli C, Rojas-Reyna R, Voit B, Lopez Cabarcos E, Stamm M. Synthesis and characterization of thermosensitive pnipam microgels covered with superparamagnetic ç-Fe2O3 nanoparticles. Langmuir. 2007;23:10280–5.

    Article  Google Scholar 

  2. Dionigi C, Piñeiro Y, Riminucci A, Bañobre M, Rivas J, Dediu V. Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl Phys A. 2014;114:585–90.

    Article  Google Scholar 

  3. Balasubramaniam S, Pothayee N, Lin Y, House M, Woodward RC, St. Pierre TG, Davis RM, Riffle JS. Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles: relaxometric and fluorescence behavior correlate totemperature-dependent aggregation. Chem Mater. 2011;23:3348–56.

    Article  Google Scholar 

  4. Messing R, Frickel N, Belkoura L, Strey R, Rahn H, Odenbach S, Schmidt AM. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules. 2011;44:2990–9.

    Article  Google Scholar 

  5. Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ. Active scaffolds for on-demand drug and cell delivery. Proc Nat Acad Sci USA. 2011;108:67–72.

    Article  Google Scholar 

  6. Luo B, Song X-J, Zhang F, Xia A, Yang W-L, Hu J-H, Wang C-C. Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir. 2010;26:1674–9.

    Article  Google Scholar 

  7. Hora D, Pollert E, Mackova H. Properties of magnetic poly(glycidyl methacrylate) and poly(N-isopropylacrylamide) microspheres. J Mater Sci. 2008;43:5845–50.

    Article  Google Scholar 

  8. Pich A, Bhattacharya S, Lu Y, Boyko V, Adler H-JP. Temperature-sensitive hybrid microgels with magnetic properties. Langmuir. 2004;20:10706–11.

    Article  Google Scholar 

  9. Schild HG. Poly(N-isopropipylacrylamide): experiments, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  Google Scholar 

  10. Sun S, Hu J, Tang H, Wu PI. Chain collapse and revival thermodynamics of poly(N-isopropylacrylamide) hydrogel. J Phys Chem B. 2010;114:9761–70.

    Article  Google Scholar 

  11. Mackova H, Hora D. Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization. J Polym Sci Pol Chem. 2006;44:968–82.

    Article  Google Scholar 

  12. Afrassiabi A, Hoffman AS, Cadwell LA. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels. J Membr Sci. 1987;33:1191.

    Article  Google Scholar 

  13. Wua J-Y, Liua S-Q, Heng PW-S, Yanga Y-Y. Evaluating proteins release from, and their interactions with, thermosensitive poly(N-isopropylacrylamide) hydrogels. J Control Release. 2005;102:361–72.

    Article  Google Scholar 

  14. Takegami K, Sano T, Wakabayashi H, Sonoda J, Yamazaki T, Morita S, Shibuya T, Uchida A. New ferromagnetic bone cement for local hyperthermia. Bioceramics. 1997;10:535.

    Google Scholar 

  15. Regmi R, Bhattarai SR, Sudakar C, Wani AS, Cunningham R, Vaishnava PP, Naik R, Oupickyb D, Lawes G. Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. J Mater Chem. 2010;20:6158–63.

    Article  Google Scholar 

  16. Mornet S, Vasseur S, Grasset F, Duguet EJ. Magnetic nanoparticle design for medical diagnosis and therapy. Mat Chem. 2004;1:2161–75.

    Article  Google Scholar 

  17. Arruebo ML, Fernández-Pacheco R, Ibarra R, Santamaría MJ. Magnetic nanoparticles for drug delivery. Nanotoday. 2007;2:22.

    Article  Google Scholar 

  18. Purushotham S, Ramanujan RVJ. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. Appl Phys. 2010;107:114701.

    Article  Google Scholar 

  19. Zadrazil A, Tokarova V, Stepanek F. Remotely triggered release from composite hydrogel sponges. Soft Matter. 2012;8:1811–6.

    Article  Google Scholar 

  20. Au A, Polotsky A, Krzyminski KL, Gutowska A, Hungerford DS, Frondoza CG. Evaluation of thermoreversible polymers containing fibroblast growth factor 9 (FGF-9) for chondrocyte culture. J Biomed Mater Res. 2004;69A:367–72.

    Article  Google Scholar 

  21. Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol. 2005;87:185.

    Article  Google Scholar 

  22. Babincova M, Altanerova V, Altaner C, Cicmanec P, Babinec P. In vivo heating of magnetic nanoparticles in alternating magnetic field. Med Phys. 2004;31:2219–21.

    Article  Google Scholar 

  23. Babincova M, Cicmanec P, Altanerova V, Altaner C, Babinec P. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry. 2002;55:17–9.

    Article  Google Scholar 

  24. Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010;6:502–10.

    Article  Google Scholar 

  25. Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett. 2011;6:383.

    Article  Google Scholar 

  26. LopezPerez JA, LopezQuintela MA, Rivas MJ. Preparation of magnetic fluids with particles obtained in microemulsions. J IEEE Transactions Magnet. 1997;33:4359–62.

    Article  Google Scholar 

  27. Hu X, Tong Z, Lyon LA. Synthesis and physicochemical properties of cationic microgels based on poly(N-isopropylmethacrylamide). Colloid Polym Sci. 2010;289:333–9.

    Article  Google Scholar 

  28. Singh N, Lyon LA. Synthesis of multifunctional nanogels using a protected macromonomer approach. Colloid Polym Sci. 2008;286:1061–9.

    Article  Google Scholar 

  29. Day DR, Jabaiah S, Jacobs RS, Little RD. Cyclodextrin formulation of the marine natural product pseudopterosin a uncovers optimal pharmacodynamics in proliferation studies of human umbilical vein endothelial cells. Marine Drugs. 2013;11:3258–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Dionigi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dionigi, C., Lungaro, L., Goranov, V. et al. Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules. J Mater Sci: Mater Med 25, 2365–2371 (2014). https://doi.org/10.1007/s10856-014-5159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5159-7

Keywords

Navigation