Abstract
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.












Similar content being viewed by others
References
Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. Movement Disorders, 2(7), 166–230.
Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.
Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.
Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.
Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.
Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.
Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8.
Bolam, J., Hanley, J., Booth, P., & Bevan, M. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196(04), 527–542.
Bosch, C., Degos, B., Deniau, J.-M., & Venance, L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. The Journal of Physiology, 589(17), 4189–4207.
Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Miller Koop, M., . . . Grill, W.M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67.
Brown, D. A. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41(3), 340–346.
Chang, H., & Kitai, S. (1985). Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Research, 347(1), 112–116.
Chang, H., Wilson, C., & Kitai, S. (1982). A Golgi study of rat neostriatal neurons: light microscopic analysis. Journal of Comparative Neurology, 208(2), 107–126.
Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., & Averbeck, B. B. (2012). Effects of dopamine depletion on information flow. PNAS, 109(44), 18126–18131.
Degos, B., Deniau, J.-M., Thierry, A.-M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. The Journal of Neuroscience, 25(33), 7687–7696.
DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.
Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818.
Farries, M. A., Kita, H., & Wilson, C. J. (2010). Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. The Journal of Neuroscience, 30(39), 13180–13191.
Fogelson, N., Kühn, A.A., Silberstein, P., Limousin, P.D., Hariz, M., Trottenberg, T., . . . Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1), 5–9.
Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609(1), 185–192.
Götz, T., Kraushaar, U., Geiger, J., Lübke, J., Berger, T., & Jonas, P. (1997). Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of Neuroscience, 17(1), 204–215.
Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15(7), 1137–1140.
Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28(3), 425–441.
Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.
Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23(5), 1916–1923.
Hollerman, J. R., & Grace, A. A. (1992). Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Research, 590(1), 291–299.
Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2), S2–S9.
Humphries, M. D., & Gurney, K. (2012). Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 36(2), 2240–2251.
Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., & Maruyama, Y. (1997). Regulation of Dopamine D1 and D2 Receptors on Striatal Acetylcholine Release in Rats. Brain Research Bulletin, 43(1), 107–115.
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.
Jankovic, J., Rajput, A. H., McDermott, M. P., & Perl, D. P. (2000). The evolution of diagnosis in early Parkinson disease. Archives of Neurology, 57(3), 369–372.
Kang, G., & Lowery, M. M. (2013). Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 244–253.
Kita, H. (2001). Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience, 105(4), 871–879.
Kita, H., & Kita, T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. The Journal of Neuroscience, 31(28), 10311–10322.
Kita, H., & Kitai, S. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.
Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., Pogosyan, A., . . . Hariz, M.I. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience, 28(24), 6165–6173.
Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.
Li, Q., Ke, Y., Chan, D.C., Qian, Z.-M., Yung, K.K., Ko, H., . . . Yung, W.-H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030–1041.
Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience, 26(14), 3875–3884.
Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.
Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J. P., Brown, P., & Magill, P. J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of Neuroscience, 28(18), 4795–4806.
Marsden, C., Parkes, J., & Quinn, N. (1982). Fluctuations of disability in Parkinson’s disease: clinical aspects. Movement disorders. London: Butterworth, 198(1), 96–122.
McCarthy, M., Moore-Kochlacs, C., Gu, X., Boyden, E., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108(28), 11620–11625.
McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience, 32(45), 15657–15668.
Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. (2012). Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590(22), 5861–5875.
Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7(8), e1002124.
Moro, E., Lozano, A.M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., . . . Hariz, M.I. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.
Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.
Nakanishi, H., Kita, H., & Kitai, S. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.
Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.
Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience Research, 43(2), 111–117.
Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.
Otsuka, T., Abe, T., Tsukagawa, T., & Song, W.-J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92(1), 255–264.
Pan, M.-K., Tai, C.-H., Liu, W.-C., Pei, J.-C., Lai, W.-S., & Kuo, C.-C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. The Journal of Clinical Investigation, 124(10), 4629.
Pang, Z., Ling, G. Y., Gajendiran, M., & Xu, Z. C. (2001). Enhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation. Neuroscience Letters, 308(3), 201–205.
Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.
Quinn, N., Luthert, P., Honavar, M., & Marsden, C. (1989). Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Movement Disorders, 4(1), 85–89.
Rajput, A., Sitte, H., Rajput, A., Fenton, M., Pifl, C., & Hornykiewicz, O. (2008). Globus pallidus dopamine and Parkinson motor subtypes Clinical and brain biochemical correlation. Neurology, 70(16 Part 2), 1403–1410.
Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.
Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.
Ryu, S.B., Bae, E.K., Kim, J., Hwang, Y.S., Im, C., Chang, J.W., . . . Kim, K.H. (2013). Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson’s Disease Model Rats. The Korean Journal of Physiology & Pharmacology, 17(4), 299–306.
Shaw, F.-Z., & Liao, Y.-F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of Neurophysiology, 93(5), 2435–2448.
Sims, R. E., Woodhall, G. L., Wilson, C. L., & Stanford, I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. European Journal of Neuroscience, 28(12), 2401–2408.
So, R. Q., Kent, A. R., & Grill, W. M. (2012a). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32(3), 499–519.
So, R. Q., McConnell, G. C., August, A. T., & Grill, W. M. (2012b). Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 626–635.
Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. The Journal of Neuroscience, 28(21), 5504–5512.
Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., . . . Schnitzler, A. (2004). Ten‐Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement disorders, 19(11), 1328–1333.
Tremblay, L., & Filion, M. (1989). Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 498(1), 17–33.
Walker, H.C., Huang, H., Gonzalez, C.L., Bryant, J.E., Killen, J., Knowlton, R.C., . . . Guthrie, B.L. (2012). Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Movement Disorders, 27(11), 1404–1412.
Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., . . . Moy, C.S. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63–73.
Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95(4), 2120–2133.
Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. The Journal of Neuroscience, 28(46), 11916–11924.
Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience, 151(2), 386–395.
Acknowledgments
This work was supported by grants from the US National Institutes of Health (NIH R37 NS040894 and NIH R01 NS079312). The authors would like to thank the Duke Shared Cluster Resource team for computational support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Action Editor: Charles Wilson
Appendix
Appendix
All transmembrane potentials \( (v) \) are expressed in \( mV \), intrinsic and synaptic conductances in \( mS/{cm}^2 \), currents in \( \mu A/{cm}^2 \), and time constants in \( msec \). For all cell models the membrane capacitance is \( 1\;\mu A/{cm}^2 \).
1.1 Thalamic neuron model
1.2 External globus pallidus neuron model
1.3 Internal globus pallidus neuron model
1.4 Subthalamic nucleus neuron model
1.5 Striatum medium spiny neuron model
1.6 Cortical regular spiking projection neuron model
1.7 Cortical fast spiking interneuron model
Rights and permissions
About this article
Cite this article
Kumaravelu, K., Brocker, D.T. & Grill, W.M. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. J Comput Neurosci 40, 207–229 (2016). https://doi.org/10.1007/s10827-016-0593-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-016-0593-9