Skip to main content

The use of automated parameter searches to improve ion channel kinetics for neural modeling

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The voltage and time dependence of ion channels can be regulated, notably by phosphorylation, interaction with phospholipids, and binding to auxiliary subunits. Many parameter variation studies have set conductance densities free while leaving kinetic channel properties fixed as the experimental constraints on the latter are usually better than on the former. Because individual cells can tightly regulate their ion channel properties, we suggest that kinetic parameters may be profitably set free during model optimization in order to both improve matches to data and refine kinetic parameters. To this end, we analyzed the parameter optimization of reduced models of three electrophysiologically characterized and morphologically reconstructed globus pallidus neurons. We performed two automated searches with different types of free parameters. First, conductance density parameters were set free. Even the best resulting models exhibited unavoidable problems which were due to limitations in our channel kinetics. We next set channel kinetics free for the optimized density matches and obtained significantly improved model performance. Some kinetic parameters consistently shifted to similar new values in multiple runs across three models, suggesting the possibility for tailored improvements to channel models. These results suggest that optimized channel kinetics can improve model matches to experimental voltage traces, particularly for channels characterized under different experimental conditions than recorded data to be matched by a model. The resulting shifts in channel kinetics from the original template provide valuable guidance for future experimental efforts to determine the detailed kinetics of channel isoforms and possible modulated states in particular types of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2, 794–804.

    Article  CAS  Google Scholar 

  • Allen, M., Heinzmann, A., Noguchi, E., Abecasis, G., Broxholme, J., Ponting, C. P., et al. (2003). Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genetics, 35, 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Yehuda, D., & Korngreen, A. (2008). Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances. Journal of Neurophysiology, 99, 1127–1136.

    Article  PubMed  Google Scholar 

  • Bush, K., Knight, J., & Anderson, C. (2005). Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Networks, 18, 488–496.

    Article  PubMed  Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  • Colbert, C. M., & Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. The Journal of Neuroscience, 16, 6676–6686.

    PubMed  CAS  Google Scholar 

  • Davison, A. P., Feng, J. F., & Brown, D. (2000). A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Research Bulletin, 51, 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., Markram, H., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99, 371–379.

    Article  PubMed  Google Scholar 

  • Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Gerken, W. C., Purvis, L. K., & Butera, R. J. (2006). Genetic algorithm for optimization and specification of a neuron model. Neurocomputing, 69, 1039–1042.

    Article  Google Scholar 

  • Grieco, T. M., Afshari, F. S., & Raman, I. M. (2002). A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar Purkinje neurons. The Journal of Neuroscience, 22, 3100–3107.

    PubMed  CAS  Google Scholar 

  • Gunay, C., Edgerton, J. R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of Neuroscience, 28, 7476–7491.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J. E., Smith, Y., & Jaeger, D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of Neuroscience, 24, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, E. B., Edgerton, J. R., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, Online First™, 10 July 2010.

  • Herzog, R. I., Liu, C. J., Waxman, S. G., & Cummins, T. R. (2003). Calmodulin binds to the C terminus of sodium channels Na(v)1.4 and Na(v)1.6 and differentially modulates their functional properties. The Journal of Neuroscience, 23, 8261–8270.

    PubMed  CAS  Google Scholar 

  • Hoffman, D. A., & Johnston, D. (1998). Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. The Journal of Neuroscience, 18, 3521–3528.

    PubMed  CAS  Google Scholar 

  • Jerng, H. H., Qian, Y., & Pfaffinger, P. J. (2004). Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophysical Journal, 87, 2380–2396.

    Article  PubMed  CAS  Google Scholar 

  • Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of Neurophysiology, 94, 3730–3742.

    Article  PubMed  Google Scholar 

  • Kole, M. H. P., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C., & Stuart, G. J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., Shu, Y. S., & Yu, Y. G. (2007). Hodgkin and Huxley model—still standing? Nature, 445, E1–E2.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, J. N., Chan, C. S., Tkatch, T., Held, J., & Surmeier, D. J. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of Neuroscience, 27, 13552–13566.

    Article  PubMed  CAS  Google Scholar 

  • Myers, J. L., & Well, A. D. (2003). Research design and statistical analysis (2nd ed.). Mahwah: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Newton, A. C. (1995). Protein-kinase-c—structure, function, and regulation. The Journal of Biological Chemistry, 270, 28495–28498.

    Article  PubMed  CAS  Google Scholar 

  • Oltedal, L., Veruki, M. L., & Hartveit, E. (2009). Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. Journal of Physiology, London, 587, 829–849.

    Article  CAS  Google Scholar 

  • Park, K. S., Mohapatra, D. P., Misonou, H., & Trimmer, J. S. (2006). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science, 313, 976–979.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. S., Yang, J. W., Seikel, E., & Trimmer, J. S. (2008). Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. Physiology, 23, 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.

    Article  PubMed  Google Scholar 

  • Rossie, S. (1999). Regulation of voltage-sensitive sodium and calcium channels by phosphorylation. In Ion channel regulation (pp. 23–48).

  • Roth, A., & Hausser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal of Physiology, London, 535, 445–472.

    Article  CAS  Google Scholar 

  • Routh, B. N., Johnston, D., Harris, K., & Chitwood, R. A. (2009). Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse. Journal of Neurophysiology, 102, 2288–2302.

    Article  PubMed  Google Scholar 

  • Rush, A. M., Wittmack, E. K., Tyrrell, L., Black, J. A., Dib-Hajj, S. D., & Waxman, S. G. (2006). Differential modulation of sodium channel Na(v)1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. The European Journal of Neuroscience, 23, 2551–2562.

    Article  PubMed  Google Scholar 

  • Rusnak, F., & Mertz, P. (2000). Calcineurin: form and function. Physiological Reviews, 80, 1483–1521.

    PubMed  CAS  Google Scholar 

  • Schulz, D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9, 356–362.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G., & Spruston, N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. The Journal of Neuroscience, 18, 3501–3510.

    PubMed  CAS  Google Scholar 

  • Taylor, A. L., Goaillard, J. M., & Marder, E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. The Journal of Neuroscience, 29, 5573–5586.

    Article  PubMed  CAS  Google Scholar 

  • Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neural models. Journal of Computational Neuroscience, 24, 358–373.

    Article  PubMed  Google Scholar 

  • Tkatch, T., Baranauskas, G., & Surmeier, D. J. (2000). Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. The Journal of Neuroscience, 20, 579–588.

    PubMed  CAS  Google Scholar 

  • Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: a review. Biological Cybernetics, 99, 241–251.

    Article  PubMed  Google Scholar 

  • Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7, 149–171.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, C. M., & Wearne, S. L. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69, 1053–1057.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by National Institute of Neurological Disorders and Stroke (NINDS) grant R01-NS039852 to DJ and National Science Foundation (NSF) DGE-0333411 IGERT fellowship to EBH. Morphological reconstructions and electrophysiological recordings of the 3 neurons modeled in this study were performed by Dr. Jesse Hanson.

Conflict of Interest Notification

To the best of our knowledge, no conflicts of interests exist related to the work we present here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jaeger.

Additional information

Action Editor: Alain Destexhe

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2657 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrickson, E.B., Edgerton, J.R. & Jaeger, D. The use of automated parameter searches to improve ion channel kinetics for neural modeling. J Comput Neurosci 31, 329–346 (2011). https://doi.org/10.1007/s10827-010-0312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0312-x

Keywords