Skip to main content

Advertisement

Log in

Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype–genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276. https://doi.org/10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  2. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113(14):1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287

  3. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E,Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–2. https://doi.org/10.1161/01.cir.93.5.841

  4. Jenni R, Oechslin E, Schneider J, Jost CA, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 86(6):666–71. https://doi.org/10.1136/heart.86.6.666

  5. Codd MB, Sugrue DD, Gersh BJ, Melton 3rd LJ (1989) Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy.A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80(3):564–72. https://doi.org/10.1161/01.cir.80.3.564

  6. Taylor MR, Carniel E, Mestroni L (2006) Cardiomyopathy, familial dilated. Orphanet J Rare Dis 1:1–8. https://doi.org/10.1186/1750-1172-1-27

    Article  Google Scholar 

  7. Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. The Lancet 375(9716):752–762. https://doi.org/10.1016/S0140-6736(09)62023-7

    Article  Google Scholar 

  8. Cohn JN, Bristow MR, Chien KR, Colucci WS, Frazier OH, Leinwand LA, Lorell BH, Moss AJ, Sonnenblick EH, Walsh RA, Mockrin SC (1997) Report of the national heart, lung, and blood institute special emphasis panel on heart failure research. Circulation 95(4):766–70. https://doi.org/10.1161/01.cir.95.4.766

  9. Grünig E, Tasman JA, Kücherer H, Franz W, Kübler W, KatusHA (1998) Frequency and phenotypes of familial dilated cardiomyopathy.JAm Col Cardiol. 31(1):186–94. https://doi.org/10.1016/s0735-1097(97)00434-8

  10. Kelly DP, Strauss AW (1994) Inherited cardiomyopathies. NEngl J Med. 330(13):913–9. https://doi.org/10.1056/NEJM199403313301308

  11. Mestroni L, Krajinovic M, Severini GM, Milasin J, Pinamonti B, Rocco C, Vatta M, Falaschi A, Giacca M, Camerini F (1995) Molecular genetics of dilated cardiomyopathies. Eur Heart J. 16(suppl_O):5–9. https://doi.org/10.1093/eurheartj/16.suppl_o.5

  12. Keeling PJ, Gang Y, Smith G, Seo H, Bent SE, Murday V, Caforio AL, McKenna WJ (1995) Familial dilated cardiomyopathy in the United Kingdom. Heart. 73(5):417–21. https://doi.org/10.1136/hrt.73.5.417

  13. Towbin JA, Bowles NE (2002) The failing heart. Nature 415(6868):227–33. https://doi.org/10.1038/415227a

  14. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, Lurie PR, McCoy KL, McDonald MA, Messere JE, Colan SD (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 348(17):1647–55. https://doi.org/10.1056/NEJMoa021715

  15. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Cox GF, Lurie PR, Hsu D, Canter C (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. Jama 296(15):1867–76. https://doi.org/10.1001/jama.296.15.1867

  16. Torp A (1978) Incidence of congestive cardiomyopathy. Postgrad Med J. 54(633):435–9. https://doi.org/10.1136/pgmj.54.633.435

  17. Torp A (1981) Incidence of congestive cardiomyopathy. Congestive Cardiomyopathy: Proceedings of a Symposium Held in Kinuna 18–22

  18. Bagger JP, Baandrup U, Rasmussen K, Møller M, Vesterlund T (1984) Cardiomyopathy in western Denmark. Heart 52(3):327–331. https://doi.org/10.1136/hrt.52.3.327

    Article  CAS  Google Scholar 

  19. Williams DG, Olsen EG (1985) Prevalence of overt dilated cardiomyopathy in two regions of England. Heart 54(2):153–155. https://doi.org/10.1136/hrt.54.2.153

    Article  CAS  Google Scholar 

  20. Rakar S, Sinagra G, Di Lenarda A, Poletti A, Bussani R, Silvestri F, Camerini F (1997) Heart Muscle Disease Study Group. Epidemiology of dilated cardiomyopathy: a prospective post-mortem study of 5252 necropsies. Eur Heart J. 18(1):117–23. https://doi.org/10.1093/oxfordjournals.eurheartj.a015092

  21. Miura K, Nakagawa H, Morikawa Y, Sasayama S, Matsumori A, Hasegawa K, Ohno Y, Tamakoshi A, Kawamura T, Inaba Y (2002) Epidemiology of idiopathic cardiomyopathy in Japan: results from a nationwide survey. Heart 87(2):126–130. https://doi.org/10.1136/heart.87.2.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferencz C, Neill CA (1992) Cardiomyopathy in infancy: observations in an epidemiologic study. Pediatr Cardiol 2:65–71. https://doi.org/10.1007/BF00798206

    Article  Google Scholar 

  23. Arola A, Jokinen E, Ruuskanen O, Saraste M, Pesonen E, Kuusela AL, Tikanoja T, Paavilainen T, Simell O (1997) Epidemiology of idiopathic cardiomyopathies in children and adolescents: a nationwide study in Finland. Am J Epidemiol 146(5):385–393. https://doi.org/10.1093/oxfordjournals.aje.a009291

    Article  CAS  PubMed  Google Scholar 

  24. Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, Davis AM, Kahler SG, Chow CW, Wilkinson JL, Weintraub RG (2003) The epidemiology of childhood cardiomyopathy in Australia. N. Engl J Med. 348(17):1639–46. https://doi.org/10.1056/NEJMoa021737

  25. Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ (2017) Pediatric cardiomyopathies. Circ Res 121(7):855–73. https://doi.org/10.1161/CIRCRESAHA.116.309386

  26. Petretta M, Pirozzi F, Sasso L, Paglia A, Bonaduce D (2011) Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol 108(8):1171–1176. https://doi.org/10.1016/j.amjcard.2011.06.022

    Article  PubMed  Google Scholar 

  27. Ntusi NB, Wonkam A, Shaboodien G, Badri M, Mayosi BM (2011) Frequency and clinical genetics of familial dilated cardiomyopathy in Cape Town: Implications for the evaluation of patients with unexplained cardiomyopathy. S Afr Med J 101(6):394–398

    PubMed  Google Scholar 

  28. Lakdawala NK, Funke BH, Baxter S, Cirino AL, Roberts AE, Judge DP, Johnson N, Mendelsohn NJ, Morel C, Care M, Chung WK (2012) Genetic testing for dilated cardiomyopathy in clinical practice. J Card Fail. 18(4):296–303. https://doi.org/10.1016/j.cardfail.2012.01.013

  29. van Spaendonck-Zwarts KY, van Rijsingen IA, van den Berg MP, LekanneDeprez RH, Post JG, van Mil AM, Asselbergs FW, Christiaans I, van Langen IM, Wilde AA, de Boer RA. Genetic analysis in 418 index patients with idiopathic dilated cardiomyopathy: overview of 10 years' experience. European journal of heart failure. 2013 Jun;15(6):628–36. https://doi.org/10.1093/eurjhf/hft013

  30. Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ (2014) GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 34(5):1315–1322. https://doi.org/10.3892/ijmm.2014.1896

    Article  CAS  PubMed  Google Scholar 

  31. Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, Xu L, Xu YJ, Shi HY, Hou XM, Qu XK (2015) TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun. 459(1): 166–71.https://doi.org/10.1016/j.bbrc.2015.02.094

  32. Tayal U, Buchan RJ, Whiffin N, Newsome S, Mazzarotto F, Walsh R, Ware JS, Cook S, Prasad S (2016) 143 Clinical and Genetic Characteristics of Familial Dilated Cardiomyopathy in a Large UK Prospective Cohort. https://doi.org/10.1136/heartjnl-2016-309890.143

  33. Franaszczyk M, Chmielewski P, Truszkowska G, Stawinski P, Michalak E, Rydzanicz M, Sobieszczanska-Malek M, Pollak A, Szczygieł J, Kosinska J, Parulski A (2017) Titin truncating variants in dilated cardiomyopathy–prevalence and genotype-phenotype correlations. PLoS One 12(1):e0169007. https://doi.org/10.1371/journal.pone.0169007

  34. Liu H, Xu YJ, Li RG, Wang ZS, Zhang M, Qu XK, Qiao Q, Li XM, Di RM, Qiu XB, Yang YQ (2019) HAND2 loss-of-function mutation causes familial dilated cardiomyopathy. Eur J Med Genet. 62(9):103540. https://doi.org/10.1016/j.ejmg.2018.09.007

  35. Peña-Peña ML, Ochoa JP, Barriales-Villa R, Cicerchia M, Palomino-Doza J, Salazar-Mendiguchia J, Lamounier A, Trujillo JP, Garcia-Giustiniani D, Fernandez X, Ortiz-Genga M (2020) Clinical utility of genetic testing in patients with dilated cardiomyopathy. Med Clin. https://doi.org/10.1016/j.medcli.2020.05.067

  36. Charron P, Elliott PM, Gimeno JR, Caforio AL, Kaski JP, Tavazzi L, Tendera M, Maupain C, Laroche C, Rubis P, Jurcut R (2018) The Cardiomyopathy Registry of the EURObservational Research Programme of the European Society of Cardiology: baseline data and contemporary management of adult patients with cardiomyopathies. Eur Heart J 39(20):1784–1793. https://doi.org/10.1093/eurheartj/ehx819

    Article  PubMed  Google Scholar 

  37. Seferović PM, Polovina M, Bauersachs J, Arad M, Gal TB, Lund LH, Felix SB, Arbustini E, Caforio AL, Farmakis D, Filippatos GS (2019) Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 5:553–576. https://doi.org/10.1002/ejhf.1461

    Article  Google Scholar 

  38. Das S, Biswas A, Kapoor M, Seth S, Bhargava B, Rao VR (2015) Epidemiology of cardiomyopathy-A clinical and genetic study of dilated cardiomyopathy: The EPOCH-D study. Journal of the Practice of Cardiovascular Sciences 1(1):30. https://doi.org/10.4103/2395-5414.157562

  39. Kumar D, Vidyapati PML, Kumar M (2017) An Etiological Study of Dilated Cardiomyopathy in Correlation with Clinical, ECG And Echocardiographic Profile. IOSR J Dent Med Sci 16(5):32–36. https://doi.org/10.9790/0853-1605083236

    Article  Google Scholar 

  40. Harikrishnan S, Sanjay G, Anees T, Viswanathan S, Vijayaraghavan G, Bahuleyan CG, Sreedharan M, Biju R, Nair T, Suresh K, Rao AC (2015) Clinical presentation, management, in-hospital and 90-day outcomes of heart failure patients in Trivandrum, Kerala, India: the Trivandrum Heart Failure Registry. Eur J Heart Fail 17(8):794–800. https://doi.org/10.1002/ejhf.283

    Article  PubMed  Google Scholar 

  41. Towbin JA, Hejtmancik JF, Brink P, Gelb B, Zhu XM, Chamberlain JS, McCabe ER, Swift M (1993) X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87(6):1854–65. https://doi.org/10.1161/01.cir.87.6.1854

  42. Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 57(1):147–57. https://doi.org/10.1016/s0008-6363(02)00695-8

  43. Lloyd DF, Vara R, Mathur S (2017) Cardiac manifestations of inherited metabolic disease in children. Pediatrics International 59(5):525–9. https://doi.org/10.1111/ped.13272

  44. Chubb H, Simpson JM (2012) The use of Z-scores in paediatric cardiology.Ann Pediatr Cardiol. 5(2):179.https://doi.org/10.4103/0974-2069.99622

  45. Mestroni L, Rocco C, Gregori D, Sinagra G, Di Lenarda A, Miocic S, Vatta M, Pinamonti B, Muntoni F, Caforio AL, McKenna WJ (1999) Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity.JAm Coll Cardiol. 34(1):181–190. https://doi.org/10.1016/s0735-1097(99)00172-2

  46. Elliott P (2000) Diagnosis and management of dilated cardiomyopathy. Heart 84(1):106. https://doi.org/10.1136/heart.84.1.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sinagra G, Merlo M, Pinamonti B (2019) Dilated Cardiomyopathy. Springer. https://doi.org/10.1007/978-3-030-13864-6

  48. Dec GW, Fuster V (1994) Idiopathic dilated cardiomyopathy. N Engl J Med. 331(23):1564–75.https://doi.org/10.1056/NEJM199412083312307

  49. Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M (2018) Cardiac phenotypes in hereditary muscle disorders: JACC state-of-the-art review.JAm Coll Cardiol.72(20):2485–506. https://doi.org/10.1016/j.jacc.2018.08.2182

  50. Goldenberg J, Ferraz MB, Pessoa AP, Fonseca AS, Carvalho AC, Hilario MO, Atra E (1992) Symptomatic cardiac involvement in juvenile rheumatoid arthritis. Int J Cardiol. 34(1):57–62. https://doi.org/10.1016/0167-5273(92)90082-e

  51. Hantson P (2019) Mechanisms of toxic cardiomyopathy. Clin Toxicol. 57(1):1–9. https://doi.org/10.1080/15563650.2018.1497172

  52. Vikhorev PG, Smoktunowicz N, Munster AB, Kostin S, Montgiraud C, Messer AE, Toliat MR, Li A, Dos Remedios CG, Lal S, Blair CA (2017) Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Sci Rep 1;7(1):1–1. https://doi.org/10.1038/s41598-017-13675-8

  53. Vang S, Corydon TJ, Børglum AD, Scott MD, Frydman J, Mogensen J, Gregersen N, Bross P (2005) Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. The FEBS Journal 272(8):2037–49. https://doi.org/10.1111/j.1742-4658.2005.04630.x

  54. Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein‐C: a modulator of cardiac contraction? The EMBO journal 14(9):1952–60. https://doi.org/10.1002/j.1460-2075.1995.tb07187.x

  55. Daehmlow S, Erdmann J, Knueppel T, Gille C, Froemmel C, Hummel M, Hetzer R, Regitz-Zagrosek V (2002) Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem Biophys Res Commun 298(1):116–120. https://doi.org/10.1016/S0006-291X(02)02374-4

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Luo R, Gu H, Deng Y, Xu X, Wu X, Hua W (2014) Cardiac troponin T (TNNT2) mutations in Chinese dilated cardiomyopathy patients. Biomed Research Int.2014. https://doi.org/10.1155/2014/907360

  57. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C, Watkins H, Burke M, Elliott PM, WJ, (2004) Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 44(10):2033–2040. https://doi.org/10.1016/j.jacc.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  58. Marques M, Pinto J, Moraes A, Sorenson M, Silva J, Oliveira G (2015) Structural Behavior of Cardiac Troponin C Variants Present in Cardiomyopathic Patients. Biophys J. 108(2):213a. https://doi.org/10.1002/j.1460-2075.1995.tb07187.x

  59. Pan S, Sommese RF, Sallam KI, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM, Ashley EA (2015) Establishing disease causality for a novel gene variant in familial dilated cardiomyopathy using a functional in-vitro assay of regulated thin filaments and human cardiac myosin. BMC Med Genet 16(1):1–7. https://doi.org/10.1186/s12881-015-0243-5

  60. Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quiñones M (2001) Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104(18):2188–2193. https://doi.org/10.1161/hc4301.098285

    Article  CAS  PubMed  Google Scholar 

  61. Lakdawala NK, Dellefave L, Redwood CS, Sparks E, Cirino AL, Depalma S, Colan SD, Funke B, Zimmerman RS, Robinson P, Watkins H (2010) Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy. J Am Coll Cardiol 55(4):320–9. https://doi.org/10.1016/j.jacc.2009.11.017

  62. van de Meerakker JB, Christiaans I, Barnett P, Deprez RH, Ilgun A, Mook OR, Mannens MM, Lam J, Wilde AA, Moorman AF, Postma AV (2013) A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding. BiochimicaetBiophysicaActa (BBA)-Molecular Cell Research 1833(4):833–9. https://doi.org/10.1016/j.bbamcr.2012.11.003

  63. Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosinare associated with dilated cardiomyopathy. J Moll Cell Cardiol. 33(4):723–32. https://doi.org/10.1006/jmcc.2000.1339

  64. Mirza M, Robinson P, Kremneva E, Nikolaeva O, Watkins H, Levitsky D, Redwood C, Mohammed EM, Marston S (2007) The effect of mutations in α-tropomyosin (E40K and E54K) that cause familial dilated cardiomyopathy on the regulatory mechanism of cardiac muscle thin filaments. J Biol Chem. 282(18):13487–97. https://doi.org/10.1074/jbc.M701071200

  65. Whitby FG, Phillips Jr GN (2000) Crystal structure of tropomyosin at 7 Ångstroms resolution. Proteins: Structure, Function, and Bioinformatics 38(1):49–59. https://onlinelibrary.wiley.com/doi/full/10.1002/%28SICI%291097-0134%2820000101%2938%3A1%3C49%3A%3AAID-PROT6%3E3.0.CO%3B2-B

  66. Henderson CA, Gomez CG, Novak SM, Mi‐Mi L, Gregorio CC (2011) Overview of the muscle cytoskeleton. Compr Physiol 7(3):891–944. https://doi.org/10.1002/cphy.c160033

  67. Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y (2018) Intermediate filaments in cardiomyopathy. Biophys Rev. 10(4):1007–31. https://doi.org/10.1007/s12551-018-0443-2

  68. Ehler E (2018) Actin-associated proteins and cardiomyopathy—the ‘unknown’beyond troponin and tropomyosin. Biophys Rev. 10(4):1121–8. https://doi.org/10.1007/s12551-018-0428-1

  69. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease Circ Res 94:284–295. https://doi.org/10.1161/01.RES.0000117769.88862.F8

  70. Tabish AM, Azzimato V, Alexiadis A, Buyandelger B, Knöll R (2017) Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy.Biophys Rev. 9(3):207–23. https://doi.org/10.1007/s12551-017-0265-7

  71. Frank D, Frey N (2011) Cardiac Z-disc signaling network. J Biol Chem 286(12):9897–904.https://doi.org/10.1074/jbc.R110.174268

  72. Despond EA, Dawson JF (2018) Classifying cardiac actin mutations associated with hypertrophic cardiomyopathy. Front Physiol. 9:405. https://doi.org/10.3389/fphys.2018.00405

  73. Frank D, Rangrez AY, Friedrich C, Dittmann S, Stallmeyer B, Yadav P, Bernt A, Schulze-Bahr E, Borlepawar A, Zimmermann WH, Peischard S (2019) Cardiac α-actin (ACTC1) gene mutation causes atrial-septal defects associated with late-onset dilated cardiomyopathy. Circulation: Genomic and Precision Medicine 12(8):e002491. https://doi.org/10.1161/CIRCGEN.119.002491

  74. Rangrez AY, Kilian L, Stiebeling K, Dittmann S, Schulze-Bahr E, Frey N, Frank D (2019) A cardiac α-actin (ACTC1) p. Gly247Asp mutation inhibits SRF-signaling in vitro in neonatal rat cardiomyocytes. Biochem Biophys Res Commun. 518(3):500–5. https://doi.org/10.1016/j.bbrc.2019.08.081

  75. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628. https://doi.org/10.1056/NEJMoa1110186

  76. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, Bowser M, Harrison B, Aaron D, Mahanta LM, Lakdawala NK (2014) The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 16(8):601–8. https://doi.org/10.1038/gim.2013.204

  77. Fatkin D, Huttner IG (2017) Titin-truncating mutations in dilated cardiomyopathy: the long and short of it. Curr Opin Cardiol. 32(3):232–8. https://doi.org/10.1097/HCO.0000000000000382

  78. Vikhorev PG, Vikhoreva NN, Yeung W, Li A, Lal S, Dos Remedios CG, Blair CA, Guglin M, Campbell KS, Yacoub MH, de Tombe P (2020) Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc Res. https://doi.org/10.1093/cvr/cvaa316

  79. Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, Kearney DL, Taylor MD, Terasaki F, Bos JM, Ommen SR (2012) Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet. 21(9):2039–53. https://doi.org/10.1093/hmg/dds022

  80. Perrot A, Tomasov P, Villard E, Faludi R, Melacini P, Lossie J, Lohmann N, Richard P, De Bortoli M, Angelini A, Varga-Szemes A (2016) Mutations in NEBL encoding the cardiac Z-disk protein nebulette are associated with various cardiomyopathies. Arch Med Sci: AMS 12(2):263. https://doi.org/10.5114/aoms.2016.59250

  81. Begay RL, Graw SL, Sinagra G, Asimaki A, Rowland TJ, Slavov DB, Gowan K, Jones KL, Brun F, Merlo M, Miani D (2018) Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell–cell adhesion structures. JACC: Clinic Electrophysiol. 4(4):504–14. https://doi.org/10.1016/j.jacep.2017.12.003

  82. Filomena MC, Yamamoto DL, Carullo P, Piroddi N, Tesi C, Scellini B, Crispino R, Zhang J, Knöll R, Polishchuk R, Poggesi C (2018) Myopalladin is upregulated in dilated cardiomyopathies patients and myopalladin knockout mice develop cardiac dilation and dysfunction following pressure overload. J Mol Cell Cardiol 120:43. https://doi.org/10.1016/j.yjmcc.2018.05.129

    Article  Google Scholar 

  83. Good JM, Fellmann F, Bhuiyan ZA, Rotman S, Pruvot E, Schläpfer J (2020) ACTN2 variant associated with a cardiac phenotype suggestive of left-dominant arrhythmogenic cardiomyopathy. HeartRhythm case reports 6(1):15. https://doi.org/10.1016/j.hrcr.2019.10.001

    Article  PubMed  Google Scholar 

  84. Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, Murphy RT, Lurie PR, Schwartz RJ, Elliott PM (2013) Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab. 80(1–2):207–15.https://doi.org/10.1016/s1096-7192(03)00142-2

  85. Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44(11):2192–2201. https://doi.org/10.1016/j.jacc.2004.08.058

    Article  CAS  PubMed  Google Scholar 

  86. Duboscq-Bidot L, Xu P, Charron P, Neyroud N, Dilanian G, MillaireA, Bors V, Komajda M, Villard E (2008) Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovas Res. 77(1):118–25. https://doi.org/10.1093/cvr/cvm015

  87. Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115(14):2801–2803

    Article  CAS  Google Scholar 

  88. Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838(2):635–42. https://doi.org/10.1074/jbc.R110.174268

  89. Abdallah AM, Carlus SJ, Al-Mazroea AH, Alluqmani M, Almohammadi Y, Bhuiyan ZA, Al-Harbi KM (2019) Digenic inheritance of LAMA4 and MYH7 mutations in patient with infantile dilated cardiomyopathy. Medicina 55(1):17. https://doi.org/10.3390/medicina55010017

  90. Knoll R, Postel R et al (2007) Laminin-alpha 4 and Integrin-Linked Kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Identification and Characterization of Novel Genes by Reverse and Forward Genetics in Zebrafish 116:47. https://doi.org/10.1161/circulationaha.107.689984

    Article  Google Scholar 

  91. Murakami T, Hayashi YK, Noguchi S, Ogawa M, Nonaka I, Tanabe Y, Ogino M, Takada F, Eriguchi M, Kotooka N, Campbell KP (2006) Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 60(5):597–602. https://doi.org/10.1002/ana.20973

    Article  CAS  Google Scholar 

  92. Ohno S (2016) The genetic background of arrhythmogenic right ventricular cardiomyopathy. J Arrhythm.32(5):398–403. https://doi.org/10.1016/j.joa.2016.01.006

  93. Brun F, Barnes CV, Sinagra G, Slavov D, Barbati G, Zhu X et al (2014) Familial Cardiomyopathy Registry. Titin and desmosomal genes in the natural history of arrhythmogenic right ventricular cardiomyopathy. J Med Genet 51:669–676. https://doi.org/10.1136/jmedgenet-2014-102591

    Article  CAS  PubMed  Google Scholar 

  94. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura KI, Utsumi H, Hamasaki N, Takeshita A (2011) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 88(5):529–35.https://doi.org/10.1161/01.res.88.5.529

  95. Philipp U, Broschk C, Vollmar A, Distl O (2007) Evaluation of tafazzin as candidate for dilated cardiomyopathy in Irish wolfhounds. J Hered 98(5):506–509. https://doi.org/10.1093/jhered/esm045

    Article  CAS  PubMed  Google Scholar 

  96. Zhu M (2020) Deletion of tafazzin in cardiomyocytes results in dilated cardiomyopathy (Doctoral dissertation, UC San Diego)

  97. Szent-Györgyi AG (1975) Calcium regulation of muscle contraction. Biophys J. 15(7):707–23. https://doi.org/10.1016/S0006-3495(75)85849-8

  98. Haghighi K, Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D, Hahn HS, Adamopoulos S, Liggett SB (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Investig 111(6):869–876. https://doi.org/10.1172/JCI17892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fish M, Shaboodien G, Kraus S, Sliwa K, Seidman CE, Burke MA, Crotti L, Schwartz PJ, Mayosi BM (2016) Corrigendum: Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies Sci Rep 6. https://doi.org/10.1038/srep22235

  100. Sipido KR, Vangheluwe P (2010) Targeting sarcoplasmic reticulum Ca2+ uptake to improve heart failure: hit or miss. https://doi.org/10.1161/CIRCRESAHA.109.210740

  101. Li W, Yin L, Shen C, Hu K, Ge J, Sun A (2018) SCN5A variants: association with cardiac disorders. Front Physiol. 9:1372.https://doi.org/10.3389/fphys.2018.01372

  102. Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP (2004) ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K ATP channel gating. Nat Genet. 36(4):382–7.https://doi.org/10.1038/ng1329

  103. El-Battrawy I, Zhao Z, Lan H, Li X, Yücel G, Lang S, Sattler K, Schünemann JD, Zimmermann WH, Cyganek L, UtikalJ (2018) Ion channel dysfunctions in dilated cardiomyopathy in limb-girdle muscular dystrophy. Circ: Genom Precis Med. 11(3):e001893. https://doi.org/10.1161/CIRCGEN.117.001893

  104. Stroud MJ (2018) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev. 10(4):1033–51.https://doi.org/10.1007/s12551-018-0431-6

  105. Hershberger RE, Morales A (1993) LMNA-related dilated cardiomyopathy. In: GeneReviews®. University of Washington, Seattle, Seattle (WA)

  106. Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP, Edvardsen T, Haugaa KH (2018) Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J. 39(10):853–60. https://doi.org/10.1093/eurheartj/ehx596

  107. Sinagra G, Dal Ferro M, Merlo M (2017) Lamin A/C cardiomyopathy: cutting edge to personalized medicine 10(6):e002004.https://doi.org/10.1161/CIRCGENETICS.117.002004

  108. Berry DA, Keogh A, Remedios CG (2001) Nuclear membrane proteins in failing human dilated cardiomyopathy. PROTEOMICS: International Edition 1(12):1507–12: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/1615-9861%28200111%291%3A12%3C1507%3A%3AAID-PROT1507%3E3.0.CO%3B2-Z

  109. Arbustini E, Pilotto A, Repetto A, Grasso M, Negri A, Diegoli M, Campana C, Scelsi L, Baldini E, Gavazzi A, Tavazzi L (2002) Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol. 39(6):981–90. https://doi.org/10.1016/s0735-1097(02)01724-2

  110. McNally EM, Golbus JR, Puckelwartz MJ (2013) Genetic mutations and mechanisms in dilated cardiomyopathy. J Clinic Investig. 123(1):19–26 https://doi.org/10.1172/JCI62862

  111. Li J, Liu WD, Yang ZL, Yuan F, Xu L, Li RG, Yang YQ (2014) Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene 548(2):174–81.https://doi.org/10.1016/j.gene.2014.07.022

  112. Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X, Xu YJ, Jiang WF, Jiang JQ, Liu X, Fang WY (2013) GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun. 439(4):591–6. https://doi.org/10.1016/j.bbrc.2013.09.023

  113. Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng HZ, Jiang WF, Jiang JF, Yang YQ (2014) A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. Int J Mol Med. 33(3):654–60. https://doi.org/10.3892/ijmm.2013.1600

  114. Mittal A, Sharma R, Prasad R, Bahl A, Khullar M (2016) Role of cardiac TBX20 in dilated cardiomyopathy. Mol Cell Biochem. 414(1):129–36. https://doi.org/10.1007/s11010-016-2666-5

  115. Zhou YM, Dai XY, Huang RT, Xue S, Xu YJ, Qiu XB, Yang YQ (2016) A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep. 14(4):3307–14. https://doi.org/10.3892/mmr.2016.5609

  116. Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, Jiang WF (2018) MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clinic Chem Lab Med. (CCLM) 56(3):502–11. https://doi.org/10.1515/cclm-2017-0461

  117. Huang J, Lu MM, Cheng L, Yuan LJ, Zhu X, Stout AL, Chen M, Li J, Parmacek MS (2009) Myocardin is required for cardiomyocyte survival and maintenance of heart function. Proc Natl Acad Sci. 106(44):18734–9. https://doi.org/10.1073/pnas.0910749106

  118. Torrado M, López E, Centeno A, Medrano C, Castro-Beiras A, Mikhailov AT (2003) Myocardin mRNA is augmented in the failing myocardium: expression profiling in the porcine model and human dilated cardiomyopathy. J Mol Med. 81(9):566–77. https://doi.org/10.1007/s00109-003-0470-7

  119. Auguste G, Gurha P, Lombardi R, Coarfa C, Willerson JT, Marian AJ (2018) Suppression of activated FOXO transcription factors in the heart prolongs survival in a mouse model of laminopathies. Circ Res. 122(5):678–92. https://doi.org/10.1161/CIRCRESAHA.117.312052

  120. Xu JH, Gu JY, Guo YH, Zhang H, Qiu XB, Li RG, Shi HY, Liu H, Yang XX, Xu YJ, Qu XK (2017) Prevalence and spectrum of NKX2–5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int Heart J. 58(4):521–9. https://doi.org/10.1536/ihj.16-440

  121. Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, Liu X, Fang WY, Yang YQ, Liao DN (2015) A novel NKX2–5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J Mol Med. 35(2):478–86. https://doi.org/10.3892/ijmm.2014.2029

  122. Sveinbjornsson G, Olafsdottir EF, Thorolfsdottir RB, Davidsson OB, Helgadottir A, Jonasdottir A, Jonasdottir A, Bjornsson E, Jensson BO, Arnadottir GA, Kristinsdottir H (2018) Variants in NKX2–5 and FLNC cause dilated cardiomyopathy and sudden cardiac death. Circ: Genom Precis Med. 11(8):e002151. https://doi.org/10.1161/CIRCGEN.117.002151

  123. Parlakian A, Charvet C, Escoubet B, Mericskay M, Molkentin JD, Gary-Bobo G, De Windt LJ, Ludosky MA, Paulin D, Daegelen D, Tuil D (2005) Clinical perspective. Circulation 112(19):2930–9. https://doi.org/10.1161/CIRCULATIONAHA.105.533778

  124. Miao L, Li J, Li J, Tian X, Lu Y, Hu S, Shieh D, Kanai R, Zhou BY, Zhou B, Liu J (2018) Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification. Sci Rep. 8(1):1–4. https://doi.org/10.1038/s41598-018-20917-w

  125. Li RG, Li L, Qiu XB, Yuan F, Xu L, Li X, Xu YJ, Jiang WF, Jiang JQ, Liu X, Fang WY (2013) GATA4 loss-of-function mutation underlies familial dilated cardiomyopathy. Biochem Biophys Res Commun 439(4):591–596. https://doi.org/10.1016/j.bbrc.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  126. Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I, Sperling SR (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2. 5, Srf, histone modifications, and microRNAs. PLoS Genet. 7(2):e1001313. https://doi.org/10.1371/journal.pgen.1001313

  127. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 81(2):280–91. https://doi.org/10.1086/519530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu JH, Gu JY, Guo YH, Zhang H, Qiu XB, Li RG, Shi HY, Liu H, Yang XX, Xu YJ, Qu XK (2017) Prevalence and spectrum of NKX2–5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int Heart J. 58(4):521–9. https://doi.org/10.1536/ihj.16-440

  129. Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110(2):155–62. https://doi.org/10.1161/01.CIR.0000135591.37759.AF

  130. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 18(5):766–73. https://doi.org/10.1038/nm.2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li D, Morales A, Gonzalez-Quintana J, Norton N, Siegfried JD, Hofmeyer M, Hershberger RE (2010) Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci 3(3):90–97. https://doi.org/10.1111/j.1752-8062.2010.00198.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Refaat MM, Lubitz SA, Makino S, Islam Z, Frangiskakis JM, Mehdi H, Gutmann R, Zhang ML, Bloom HL, MacRae CA, Dudley SC (2012) Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 9(3):390–396. https://doi.org/10.1016/j.hrthm.2011.10.016

    Article  PubMed  Google Scholar 

  133. Zhu C, Yin Z, Tan B, Guo W (2017) Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. BiochimicaetBiophysicaActa (BBA)-Molecular Basis of Disease 1863(9):2363–71. https://doi.org/10.1016/j.bbadis.2017.06.023

  134. Tharp CA, Haywood ME, Sbaizero O, Taylor MR, Mestroni L (2019) The giant protein titin’s role in cardiomyopathy: genetic, transcriptional, and post-translational modifications of TTN and their contribution to cardiac disease. Front Physiol. 10:1436. https://doi.org/10.3389/fphys.2019.01436

  135. Lefeber DJ, de Brouwer AP, Morava E, Riemersma M, Schuurs-Hoeijmakers JH, Absmanner B, Verrijp K, van den Akker WM, Huijben K, Steenbergen G, van Reeuwijk J (2011) Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet 7(12):e1002427. https://doi.org/10.1371/journal.pgen.1002427

  136. Yu J, Zeng C, Wang Y (2019) Epigenetics in dilated cardiomyopathy. Curr Opin Cardiol 34(3):260. https://doi.org/10.1097/hco.0000000000000616

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gi WT, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Tappu R, Lehmann DH, ShirvaniSamani O, Wisdom M, Keller A, Katus HA, Meder B (2020) Epigenetic Regulation of Alternative mRNA Splicing in Dilated Cardiomyopathy. J Clinic Med 9(5):1499. https://doi.org/10.3390/jcm9051499

  138. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 5(3):413–429. https://doi.org/10.1002/emmm.201201553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gramlich M, Pane LS, Zhou Q, Chen Z, Murgia M, Schötterl S, Goedel A, Metzger K, Brade T, Parrotta E, Schaller M (2015) Antisense‐mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med. 7(5):562–76. https://doi.org/10.15252/emmm.201505047

  140. Ito E, Miyagawa S, Fukushima S, Yoshikawa Y, Saito S, Saito T, Harada A, Takeda M, Kashiyama N, Nakamura Y, Shiozaki M (2017) Histone modification is correlated with reverse left ventricular remodeling in nonischemic dilated cardiomyopathy. Annals  Thorac Surg. 104(5):1531–9. https://doi.org/10.1016/j.athoracsur.2017.04.046

  141. Jiang DS, Yi X, Li R, Su YS, Wang J, Chen ML, Liu LG, Hu M, Cheng C, Zheng P, Zhu XH (2017) The histone methyltransferase mixed lineage leukemia (MLL) 3 may play a potential role in clinical dilated cardiomyopathy. Mol Med. 23(1):196–203. https://doi.org/10.2119/molmed.2017.00012

  142. Theis JL, Sharpe KM, Matsumoto ME, Chai HS, Nair AA, Theis JD, De Andrade M, Wieben ED, Michels VV, Olson TM (2011) Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circulation: Cardiovascular Genetics 4(6):585–94. https://doi.org/10.1161/CIRCGENETICS.111.961052

  143. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & Development 21(14):1790–802. https://doi.org/10.1007/s12551-018-0428-1

  144. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254. https://doi.org/10.1101/gad.1738708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci. 103(48):18255–60. https://doi.org/10.1073/pnas.0608791103

  146. Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cel Biol. 24(18):8007–17. https://doi.org/10.1128/MCB.24.18.8007-8017.2004

  147. Li D, Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Partain J, Nixon RR, Allen CN, Irwin RP, Jakobs PM (2006) Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet 79(6):1030–1039. https://doi.org/10.1086/509900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gianni D, Li A, Tesco G, McKay KM, Moore J, Raygor K, Rota M, Gwathmey JK, Dec GW, Aretz T, Leri A (2010) Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy. Circulation 121(10):1216. https://doi.org/10.1161/CIRCULATIONAHA.109.879510

  149. Dhandapany PS, Razzaque MA, Muthusami U, Kunnoth S, Edwards JJ, Mulero-Navarro S, Riess I, Pardo S, Sheng J, Rani DS, Rani B (2014) RAF1 mutations in childhood-onset dilated cardiomyopathy. Nat Genet 46(6):635–639. https://doi.org/10.1038/ng.2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhao Y, Feng Y, Zhang YM, Ding XX, Song YZ, Zhang AM, Liu L, Zhang H, Ding JH, Xia XS (2015) Targeted next-generation sequencing of candidate genes reveals novel mutations in patients with dilated cardiomyopathy. Int J Mol Med 36(6):1479–86. https://doi.org/10.3892/ijmm.2015.2361

  151. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Müller S, KayvanpourE, Vogel B, Sedaghat-Hamedani F (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. 36(18):1123–35. https://doi.org/10.1093/eurheartj/ehu301

  152. Norton N, Li D, Rieder MJ, Siegfried JD, Rampersaud E, Züchner S, Mangos S, Gonzalez-Quintana J, Wang L, McGee S, Reiser J (2011) Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet. 88(3):273–82. https://doi.org/10.1016/j.ajhg.2011.01.016

  153. Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat. 32(12):1481–91. https://doi.org/10.1002/humu.21603

  154. Campbell N, Sinagra G, Jones KL, Slavov D, Gowan K, Merlo M, Carniel E, Fain PR, Aragona P, Di Lenarda A, Mestroni L (2013) Whole exome sequencing identifies a troponin T mutation hot spot in familial dilated cardiomyopathy. PloS One 8(10):e78104. https://doi.org/10.1371/journal.pone.0078104

  155. Zhang M, Chen J, Si D, Zheng Y, Jiao H, Feng Z, Hu Z, Duan R (2014) Whole exome sequencing identifies a novel EMD mutation in a Chinese family with dilated cardiomyopathy. BMC medical genetics.15(1):1–7. https://doi.org/10.1186/1471-2350-15-77

  156. Akinrinade O, Ollila L, Vattulainen S, Tallila J, Gentile M, Salmenperä P, Koillinen H, Kaartinen M, Nieminen MS, Myllykangas S, Alastalo TP zhao (2015) Genetics and genotype–phenotype correlations in Finnish patients with dilated cardiomyopathy. Eur Heart J. 36(34):2327–37. https://doi.org/10.1093/eurheartj/ehv253

  157. Truszkowska GT, Bilińska ZT, Muchowicz A, Pollak A, Biernacka A, Kozar-Kamińska K, Stawiński P, Gasperowicz P, Kosińska J, Zieliński T, Płoski R (2017) Homozygous truncating mutation in NRAP gene identified by whole exome sequencing in a patient with dilated cardiomyopathy. Sci Rep. 7(1):1–5. https://doi.org/10.1038/s41598-017-03189-8

  158. Dvornikov AV, de Tombe PP, Xu X (2018) Phenotyping cardiomyopathy in adult zebrafish. Prog Biophys Mol Biol 138:116–125. https://doi.org/10.1016/j.pbiomolbio.2018.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  159. JD Federspiel P Tandon CM Wilczewski L Wasson LE Herring SS Venkatesh IM Cristea FL Conlon 2019 Conservation and divergence of protein pathways in the vertebrate heart PLoS Biol 17 9 e3000437 https://doi.org/10.1371/journal.pbio.3000437

  160. Ding Y, Bu H, Xu X (2020) Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 11:1526. https://doi.org/10.3389/fphys.2020.599244

  161. Arber S, Hunter JJ, Ross Jr J, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88(3):393–403. https://doi.org/10.1016/s0092-8674(00)81878-4

  162. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross Jr J, Kranias EG, Giles WR (1999) Chronic phospholamban–sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99(3):313–22. https://doi.org/10.1016/s0092-8674(00)81662-1

  163. Wang X, Osinska H, Dorn GW, Nieman M, Lorenz JN, Gerdes AM, Witt S, Kimball T, Gulick J, Robbins J (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103(19):2402–7. https://doi.org/10.1161/01.cir.103.19.2402

  164. Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes MA, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Moll Cell Cardiol. 31(11):2063–76. https://doi.org/10.1006/jmcc.1999.1037

  165. McConnell BK, Jones KA, Fatkin D, Arroyo LH, Lee RT, Aristizabal O, Turnbull DH, Georgakopoulos D, Kass D, Bond M, Niimura H (1999) Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J Clin Investig. 104(9):1235–44. https://doi.org/10.1172/JCI7377

  166. Sussman MA, Welch S, Cambon N, Klevitsky R, Hewett TE, Price R, Witt SA, Kimball TR (1998) Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Investig 101(1):51–61. https://doi.org/10.1172/JCI1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Megeney LA, Kablar B, Perry RL, Ying C, May L, Rudnicki MA (1999) Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci 96(1):220–225. https://doi.org/10.1073/pnas.96.1.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hack AA, Ly CT, Jiang F, Clendenin CJ, Sigrist KS, Wollmann RL, McNally EM (1998) γ-Sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J Cell Biol 142(5):1279–1287. https://doi.org/10.1083/jcb.142.5.1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Coral-Vazquez R, Cohn RD, Moore SA, Hill JA, Weiss RM, Davisson RL, Straub V, Barresi R, Bansal D, Hrstka RF (1999) Williamson R. Disruption of the sarcoglycan–sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98(4):465–74. https://doi.org/10.1016/s0092-8674(00)81975-3

  170. Homburger F, Baker JR, Nixon CW, Whitney R (1962) Primary, generalized polymyopathy and cardiac necrosis in an inbred line of Syrian hamsters. Pharmacology 6(5):339–345

    Article  Google Scholar 

  171. Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, et al. (1997) Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA.94:13873–8. https://doi.org/10.1073/pnas.94.25.13873

  172. Sakamoto A (2003) Molecular pathogenesis of severe cardiomyopathy in the TO-2 hamster. Exp Clin Cardiol 8(3):143

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Maekawa K, Hirayama A, Iwata Y, Tajima Y, Nishimaki-Mogami T, Sugawara S, Ueno N, Abe H, Ishikawa M, Murayama M, Matsuzawa Y (2013) Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J Mol Cell Cardiol. 59:76–85. https://doi.org/10.1016/j.yjmcc.2013.02.008

  174. Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci. 103(5):1394–9. https://doi.org/10.1073/pnas.0507359103

  175. Allikian MJ, Bhabha G, Dospoy P, Heydemann A, Ryder P, Earley JU, Wolf MJ, Rockman HA, McNally EM (2007) Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet. 16(23):2933–43. https://doi.org/10.1093/hmg/ddm254

  176. Goldstein JA, Kelly SM, LoPresti PP, Heydemann A, Earley JU, Ferguson EL, Wolf MJ, McNally EM (2011) SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Hum Mol Genet. 20(5):894–904. https://doi.org/10.1093/hmg/ddq528

  177. Wolf MJ (2012) Modeling dilated cardiomyopathies in Drosophila. Trends in cardiovascular medicine. 22(3):55–61. https://doi.org/10.1016/j.tcm.2012.06.012

  178. Ocorr K, Vogler G, Bodmer R (2014) Methods to assess Drosophila heart development, function and aging. Methods 68(1):265–272. https://doi.org/10.1016/j.ymeth.2014.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Walls SM, Cammarato A, Chatfield DA, Ocorr K, Harris GL, Bodmer R (2018) Ceramide-protein interactions modulate ceramide-associated lipotoxic cardiomyopathy. Cell Rep 22(10):2702–2715. https://doi.org/10.1016/j.celrep.2018.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cammarato A, Dambacher CM, Knowles AF, Kronert WA, Bodmer R, Ocorr K, Bernstein SI (2008) Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 19(2):553–562. https://doi.org/10.1091/mbc.e07-09-0890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Auxerre-Plantié E, Nielsen T, Grunert M, Olejniczak O, Perrot A, Özcelik C, Harries D, Matinmehr F, Dos Remedios C, Mühlfeld C, Kraft T (2020) Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart. Disease models & mechanisms. 13(12).

  182. Neely GG, Kuba K, Cammarato A, Isobe K, Amann S, Zhang L, Murata M, Elmén L, Gupta V, Arora S, Sarangi R (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 141(1):142–153. https://doi.org/10.1016/j.cell.2010.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015)Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy.Science 349:982–986. https://doi.org/10.1126/science.aaa5458

  184. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.Sci Transl Med 4:130ra47. https://doi.org/10.1126/scitranslmed.3003552

  185. Siu CW, Lee YK, Ho JC, Lai WH, Chan YC, Ng KM, Wong LY, Au KW, Lau YM, Zhang J, Lay KW, Colman A, Tse HF (2012) Modeling of lamin A/C mutation premature cardiac aging using patient–specific induced pluripotent stem cells. Aging (Albany NY)4:803–822. https://doi.org/10.18632/aging.100503

  186. Tse HF, Ho JC, Choi SW, Lee YK, Butler AW, Ng KM, Siu CW, Simpson MA, Lai WH, Chan YC, Au KW (2013) Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Human molecular genetics 22(7):1395–403.https://doi.org/10.1093/hmg/dds556

  187. Streckfuss-Bömeke K, Tiburcy M, Fomin A, Luo X, Li W, Fischer C, Özcelik C, Perrot A, Sossalla S, Haas J, Vidal RO (2017) Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 113:9–21.https://doi.org/10.1016/j.yjmcc.2017.09.008

  188. Garg P, Oikonomopoulos A, Chen H, Li Y, Lam CK, Sallam K, Perez M, Lux RL, Sanguinetti MC, Wu JC (2018) Genome editing of induced pluripotent stem cells to decipher cardiac channelopathy variant. J Am Coll Cardiol 72(1):62–75. https://doi.org/10.1016/j.jacc.2018.04.041

  189. Ma N, Zhang JZ, Itzhaki I, Zhang SL, Chen H, Haddad F, Kitani T, Wilson KD, Tian L, Shrestha R, Wu H (2018) Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells. Circulation 138(23):2666–81. https://doi.org/10.1161/CIRCULATIONAHA.117.032273

  190. Paik DT, Chandy M, Wu JC (2020) Patient and disease–specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev. 72(1):320–42. https://doi.org/10.1124/pr.116.013003

  191. Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB, Frese KS, Keller A, Jensen K, Katus HA, Meder B (2017) Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clinic Res Cardiol. 106(2):127–39. https://doi.org/10.1007/s00392-016-1033-6

  192. Bondue A, Arbustini E, Bianco A, Ciccarelli M, Dawson D, De Rosa M, Hamdani N, Hilfiker-Kleiner D, Meder B, Leite-Moreira AF, Thum T (2018) Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res. 114(10):1287–303. https://doi.org/10.1093/cvr/cvy122

  193. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet. 11(12):855–66. https://doi.org/10.1038/nrg2897

  194. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–109. https://doi.org/10.1016/j.hrthm.2011.05.020

  195. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA (2009) Genetic evaluation of cardiomyopathy a Heart Failure Society of America practice guideline. J Card Fail 15(2):83–97.https://doi.org/10.1016/j.cardfail.2018.03.004

  196. Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna WJ, Monserrat L, Pankuweit S (2010) Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 31(22):2715–2726. https://doi.org/10.1093/eurheartj/ehq271

    Article  PubMed  Google Scholar 

  197. Sweet ME, Taylor MR, Mestroni L (2015) Diagnosis, prevalence, and screening of familial dilated cardiomyopathy. Expert opinion on orphan drugs 3(8):869–76. https://doi.org/10.1517/21678707.2015.1057498

  198. Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, De Marvao A, Dawes TJ, Felkin LE (2020) Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141(5):387–98. https://doi.org/10.1161/CIRCULATIONAHA.119.037661

  199. Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM, Duboc D (2006) Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 354(2):209–10. https://doi.org/10.1056/NEJMc052632

  200. BÉCANE HM, Bonne G, Varnous S, Muchir A, Ortega V, Hammouda EH, URTIZBEREA JA, Lavergne T, Fardeau M, Eymard B, Weber S (2000) High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol. 23(11):1661–6. https://doi.org/10.1046/j.1460-9592.2000.01661.x

  201. Chen F, Yang J, Li Y, Wang H (2017) Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol 59(4):209–14. https://doi.org/10.1016/j.hjc.2017.10.002

  202. Fan KL, Zhang HF, Shen J, Zhang Q, Li XL (2013) Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J. 65(1):12–6. https://doi.org/10.1016/j.ihj.2012.12.022

  203. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–59. https://doi.org/10.1016/j.cell.2007.07.021

  204. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular cell 39(1):133–44. https://doi.org/10.1016/j.molcel.2010.06.010

  205. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, Francis GS, Lenihan D, Lewis EF, McNamara DM, Pahl E (2016). Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 134(23):e579–646. https://doi.org/10.1161/CIR.0000000000000455

  206. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128(16):1810–1852. https://doi.org/10.1161/CIR.0b013e31829e8807

    Article  PubMed  Google Scholar 

  207. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA (2009) ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119(14):1977–2016. https://doi.org/10.1161/CIRCULATIONAHA.109.192064

  208. Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, vanVeldhuisen DJ, Atar D, Hoes AW (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the Eur Soc Intensive Care Med. (ESICM). Eur Heart J. 29(19):2388–442. https://doi.org/10.1016/j.ejheart.2008.08.005

  209. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MR, Vatta M, Ware SM (2018) Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20(9):899–909. https://doi.org/10.1038/s41436-018-0039-z

    Article  PubMed  Google Scholar 

  210. Rosenbaum AN, Agre KE, Pereira NL (2020) Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev cardiol. 17(5):286–97. https://doi.org/10.1038/s41569-019-0284-0

  211. Wilcox JE, Hershberger RE (2018) Genetic cardiomyopathies. Current opinion in cardiology 33(3):354–62. https://doi.org/10.1097/HCO.0000000000000512

Download references

Funding

Authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Prerna Giri performed the literature survey and prepared the original draft including all figures and table. Dr. Bhagyalaxmi Mohapatra sketched the outline for the article, critically supervised and revised the manuscript at every single step. Amrita Mukhopadhyay prepared and formatted the reference list and collected literature related to next-generation sequencing. Mohini Gupta did formatting of the in-text citations and collected literature on mitochondrial proteins. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhagyalaxmi Mohapatra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, P., Mukhopadhyay, A., Gupta, M. et al. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 27, 431–454 (2022). https://doi.org/10.1007/s10741-021-10125-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10125-6

Keywords

Navigation