Skip to main content

Neuroprotective effects of Caffeic acid phenethyl ester on experimental traumatic brain injury in rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the therapeutic efficacy of caffeic acid phenethyl ester (CAPE) with an experimental traumatic brain injury (TBI) model in rats. Twenty-four adult male Sprague–Dawley rats were randomly divided into three groups of 8 rats each: control, TBI, and TBI + CAPE treatment. In TBI and TBI + CAPE treatment groups, a cranial impact was delivered to the skull from a height of 7 cm at a point just in front of the coronal suture and over the right hemisphere. Rats were sacrificed at 4 h after the onset of injury. Brain tissues were removed for biochemical and histopathological investigation. To date, no biochemical and histopathological changes of neurodegeneration in the frontal cortex after TBI in rats by CAPE treatment have been reported. The TBI significantly increased tissue malondialdehyde (MDA) levels, and significantly decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, but not tissue catalase (CAT) activity, when compared with controls. The administration of a single dose of CAPE (10 μmol/kg) 15 min after the trauma has shown protective effect via decreasing significantly the elevated MDA levels and also significantly increasing the reduced antioxidant enzyme (SOD and GPx) activities, except CAT activity. In the TBI group, severe degenerative changes, shrunken cytoplasma and extensively dark picnotic nuclei in neurons, as well as vacuolization indicating tissue edema formation. The morphology of neurons in the CAPE treatment group was well protected. The number of neurons in the trauma alone group was significantly less than that of both the control and TBI +CAPE treatment groups. The caspase 3 immunopositivity was increased in degenerating neurons of the traumatic brain tissue. Treatment of CAPE markedly reduced the immunoreactivity of degenerating neurons. TBI caused severe degenerative changes, shrunken cytoplasma, severely dilated cisternae of endoplasmic reticulum, markedly swollen mitochondria with degenerated cristae and nuclear membrane breakdown with chromatin disorganization in neurons of the frontal cortex. In conclusion, the CAPE treatment might be beneficial in preventing trauma-induced oxidative brain tissue damage, thus showing potential for clinical implications. We believe that further preclinical research into the utility of CAPE may indicate its usefulness as a potential treatment on neurodegeneration after TBI in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1974) Catalase in vitro. Methods Enzymol 105:121–126

    Article  Google Scholar 

  • Baethmann A, Maier-Hauff K, Schürer L, Lange M, Guggenbichler C, Vogt W, Jacob K, Kempski O (1989) Release of glutamate and free fatty acids in vasogenic brain edema. J Neurosurg 70:578–591

    Article  PubMed  CAS  Google Scholar 

  • Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  PubMed  Google Scholar 

  • Cernak I, Chapman SM, Hamlin GP, Vink R (2002) Temporal characterisation of pro- and anti-apoptotic mechanisms following diffuse traumatic brain injury in rats. J Clin Neurosci 9:565–572

    Article  PubMed  Google Scholar 

  • Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 13:813–821

    PubMed  CAS  Google Scholar 

  • Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J, Loeffert JE, Nathaniel PD, Jin KL, Graham SH (2000) Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 74:740–753

    Article  PubMed  CAS  Google Scholar 

  • Cristofori L, Tavazzi B, Gambin R, Vagnozzi R, Vivenza C, Amorini AM, Di Pierro D, Fazzina G, Lazzarino G (2001) Early onset of lipid peroxidation after human traumatic brain injury: a fatal limitation for the free radical scavenger pharmacological therapy. J Investig Med 49:450–458

    Article  PubMed  CAS  Google Scholar 

  • Erhardt L (1996) Biochemical markers in acute myocardial infarction—the beginning of a new era? Eur Heart J 17:1781–1782

    PubMed  CAS  Google Scholar 

  • Fadillioglu E, Oztas E, Erdogan H, Yagmurca M, Sogut S, Ucar M, Irmak MK (2004) Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 24:47–52

    Article  PubMed  CAS  Google Scholar 

  • Fadillioglu E, Gursul C, Iraz M (2010) Effects of caffeic acid phenethyl ester on thioacetamide-induced hepatic encephalopathy in rats. Prog Neuropsychopharmacol Biol Psychiatr 34(8):1440–1445

    Article  CAS  Google Scholar 

  • Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115:4–18

    Article  PubMed  CAS  Google Scholar 

  • Hepsen IF, Bayramlar H, Gultek A, Ozen S, Tilgen F, Evereklioglu C (1997) Caffeic acid phenethyl ester to inhibit posterior capsule opacification in rabbits. J Cataract Refract Surg 23:1572–1576

    PubMed  CAS  Google Scholar 

  • Hicdonmez T, Kanter M, Tiryaki M, Parsak T, Cobanoglu S (2006) Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res 31:473–481

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ilhan A, Koltuksuz U, Ozen S, Uz E, Ciralik H, Akyol O (1999) The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury. Eur J Cardiothorac Surg 16:458–463

    Article  PubMed  CAS  Google Scholar 

  • Irmak MK, Koltuksuz U, Kutlu NO, Yağmurca M, Ozyurt H, Karaman A, Akyol O (2001) The effect of caffeic acid phenethyl ester on ischaemia-reperfusion injury in comparison with alpha-tocopherol in rat kidneys. Urol Res 29:190–193

    Article  PubMed  CAS  Google Scholar 

  • Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD (2001) Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 21:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Khan M, Elango C, Ansari MA, Singh I, Singh AK (2007) Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. J Neurochem 102(2):365–377

    Article  PubMed  CAS  Google Scholar 

  • Koltuksuz U, Ozen S, Uz E, Aydinç M, Karaman A, Gültek A, Akyol O, Gürsoy MH, Aydin E (1999) Caffeic acid phenethyl ester prevents intestinal reperfusion injury in rats. J Pediatr Surg 34:1458–1462

    Article  PubMed  CAS  Google Scholar 

  • Kus I, Colakoglu N, Pekmez H, Seckin D, Ogeturk M, Sarsilmaz M (2004) Protective effects of caffeic acid phenethyl ester (CAPE) on carbon tetrachloride-induced hepatotoxicity in rats. Acta Histochem 106:289–297

    PubMed  CAS  Google Scholar 

  • Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  PubMed  Google Scholar 

  • Lewén A, Skoglösa Y, Clausen F, Marklund N, Chan PH, Lindholm D, Hillered L (2001) Paradoxical increase in neuronal DNA fragmentation after neuroprotective free radical scavenger treatment in experimental traumatic brain injury. J Cereb Blood Flow Metab 21:344–350

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RI (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lu J, Moochhala S, Shirhan M, Ng KC, Teo AL, Tan MH, Moore XL, Wong MC, Ling EA (2003) Neuroprotection by aminoguanidine after lateral fluid-percussive brain injury in rats: a combined magnetic resonance imaging, histopathologic and functional study. Neuropharmacology 44:253–263

    Article  PubMed  CAS  Google Scholar 

  • Marshall LF (2000a) Epidemiology and cost of central nervous system injury. Clin Neurosurg 46:105–112

    PubMed  CAS  Google Scholar 

  • Marshall LF (2000b) Head injury: recent past, present, and future. Neurosurgery 47:546–561

    PubMed  CAS  Google Scholar 

  • Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, Klauber MR, Lagarrigue J, Lobato R, Persson L, Pickard JD, Piek J, Servadei F, Wellis GN, Morris GF, Means ED, Musch B (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89:519–525

    Article  PubMed  CAS  Google Scholar 

  • McCall JM, Braughler JM, Hall ED (1987) Lipid peroxidation and the role of oxygen radicals in CNS injury. Acta Anaesthesiol Belg 38:279–373

    Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    PubMed  CAS  Google Scholar 

  • Mcintosh TK, Juhler M, Wieloch T (1998a) Novel pharmacologic strategies in the treatment of experimental traumatic brain injury. J Neurotrauma 15:731–769

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998b) The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–267

    Article  PubMed  CAS  Google Scholar 

  • Montpied P, De Bock F, Rondouin G, Niel G, Briant L, Courseau AS, Lerner-Natoli M, Bockaert J (2003) Caffeic acid phenethyl ester (CAPE) prevents inflammatory stress in organotypic hippocampal slice cultures. Mol Brain Res 115:111–120

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Banskota AH, Tezuka Y, Saiki I, Kadota S (2002) Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26–L5 carcinoma cell line. Bioorg Med Chem 10:3351–3359

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718

    Article  PubMed  Google Scholar 

  • Ogeturk M, Kus I, Colakoglu N, Zararsiz I, Ilhan N, Sarsilmaz M (2005) Caffeic acid phenethyl ester protects kidneys against carbon tetrachloride toxicity in rats. J Ethnopharmacol 97:273–280

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid rection. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odacı E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35

    Article  PubMed  Google Scholar 

  • Ozisik PA, Oruckaptan H, Ozdemir Geyik P, Misirlioglu M, Sargon MF, Kivanc K, Ozgen T (2007) Effect of erythropoietin on brain tissue after experimental head trauma in rats. Surg Neurol 68:547–555

    Article  Google Scholar 

  • Ozsüer H, Görgülü A, Kiriş T, Cobanoğlu S (2005) The effects of memantine on lipid peroxidation following closed-head trauma in rats. Neurosurg Rev 28:143–147

    Article  PubMed  Google Scholar 

  • Ozyurt H, Irmak MK, Akyol O, Sogut S (2001) Caffeic acid phenethyl ester changes the indices of oxidative stress in serum of rats with renal ischemia-reperfusion injury. Cell Biochem Funct 19:259–263

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  • Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 47:1575–1583

    Google Scholar 

  • Russo A, Longo R, Vanella A (2002) Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73:21–29

    Article  Google Scholar 

  • Scatton B, Carter C, Benavidas J, Giroux C (1991) N-methyl-D-aspartate receptor antagonists: a novel therapeutic perspective for the treatment of ischemic brain injury. Cerebrovasc Dis 1:121–135

    Article  Google Scholar 

  • Shapira Y, Shohami E, Sidi S, Soffer D, Freeman S, Cotev S (1988) Experimental closed head injury in rats: mechanical, pathophysiologic and neurologic properties. Crit Care Med 16:258–265

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK (1993) Basic mechanisms of traumatic brain damage. Ann Emerg Med 22:959–969

    Article  PubMed  CAS  Google Scholar 

  • Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7:3–12

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  • Teasdale GM, Graham DI (1998) Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 43:723–738

    Article  PubMed  CAS  Google Scholar 

  • Thomale UW, Griebenow M, Kroppenstedt SN, Unterberg AW, Stover JF (2006) The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 32:149–155

    Article  PubMed  CAS  Google Scholar 

  • Ustun ME, Gürbilek M, Ak A, Vatansev H, Duman A (2001) Effect of magnesium sulfate on tissue lactate and malondialdehyde levels in experimental head trauma. Intensive Care Med 27:264–268

    Article  PubMed  CAS  Google Scholar 

  • Vagnozzi R, Marmarou A, Tavazzi B, Signoretti S, Di Pierro D, del Bolgia F, Amorini AM, Fazzina G, Sherkat S, Lazzarino G (1999) Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma 16:903–913

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Memduh Kerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerman, M., Kanter, M., Coşkun, K.K. et al. Neuroprotective effects of Caffeic acid phenethyl ester on experimental traumatic brain injury in rats. J Mol Hist 43, 49–57 (2012). https://doi.org/10.1007/s10735-011-9376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-011-9376-9

Keywords