Abstract
Despite a tight regulation of its intracellular content, cholesterol is found accumulated in pathological conditions such as sphingolipidosis as well as after cell treatment with drugs like hydrophobic amines. Furthermore, cellular cholesterol increases when cultured cells approach confluence. Under these conditions, the endocytic pathways of plasma membrane sphingolipids are differently affected. In this short review, we will summarize recent results from our laboratory as well as those of other groups, indicating that the intracellular accumulation of cholesterol inhibits the dissociation of rab GTPases from the target membranes, causing the alteration of rab-mediated membrane traffic.
Similar content being viewed by others
References
Hirabayashi, Y., Igarashi, Y., Merrill, A.H., Jr. (eds.): Sphingolipid biology. Springer, Tokyo (2006)
Gahmberg, C.G., Laine, R.A.: Special issue of glycobiology and sphingobiology. Biochim. Biophys. Acta 1780, 323–625 (2008)
Simons, K., Vaz, W.L.: Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004). doi:10.1146/annurev.biophys.32.110601.141803
Hullin-Matsuda, F., Kobayashi, T.: Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes. Cell. Mol. Life Sci. 64, 2492–2504 (2007). doi:10.1007/s00018-007-7281-x
Hannun, Y.A., Obeid, L.M.: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008). doi:10.1038/nrm2329
Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., et al.: Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547 (2001). doi:10.1083/jcb.200102084
Ikonen, E.: Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008). doi:10.1038/nrm2336
London, E.: How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta 1746, 203–220 (2005). doi:10.1016/j.bbamcr.2005.09.002
Ramstedt, B., Slotte, J.P.: Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim. Biophys. Acta 1758, 1945–1956 (2006). doi:10.1016/j.bbamem.2006.05.020
Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S.: Protein sensors for membrane sterols. Cell 124, 35–46 (2006). doi:10.1016/j.cell.2005.12.022
Pagano, R.E.: Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 885–891 (2003). doi:10.1098/rstb.2003.1275
Mukherjee, S., Maxfield, F.R.: Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004)
Chang, T.Y., Reid, P.C., Sugii, S., Ohgami, N., Cruz, J.C., Chang, C.C.: Niemann–Pick type C disease and intracellular cholesterol trafficking. J. Biol. Chem. 280, 20917–20920 (2005). doi:10.1074/jbc.R400040200
Cansell, M., Gouygou, J.P., Jozefonvicz, J., Letourneur, D.: Lipid composition of cultured endothelial cells in relation to their growth. Lipids 32, 39–44 (1997). doi:10.1007/s11745-997-0006-3
Corvera, S., DiBonaventura, C., Shpetner, H.S.: Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. J. Biol. Chem. 275, 31414–31421 (2000). doi:10.1074/jbc.M001708200
Takahashi, M., Murate, M., Fukuda, M., Sato, S.B., Ohta, A., Kobayashi, T.: Cholesterol controls lipid endocytosis through Rab11. Mol. Biol. Cell 18, 2667–2677 (2007). doi:10.1091/mbc.E06-10-0924
Pagano, R.E., Chen, C.S.: Use of BODIPY-labeled sphingolipids to study membrane traffic along the endocytic pathway. Ann. N. Y. Acad. Sci. 845, 152–160 (1998). doi:10.1111/j.1749-6632.1998.tb09668.x
Ghidoni, R., Sala, G., Giuliani, A.: Use of sphingolipid analogs: benefits and risks. Biochim. Biophys. Acta 1439, 17–39 (1999)
Sandvig, K., van Deurs, B.: Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966 (1996)
Johannes, L., Goud, B.: Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum. Trends Cell Biol. 8, 158–162 (1998). doi:10.1016/S0962-8924(97)01209-9
Levade, T., Gatt, S., Maret, A., Salvayre, R.: Different pathways of uptake and degradation of sphingomyelin by lymphoblastoid cells and the potential participation of the neutral sphingomyelinase. J. Biol. Chem. 266, 13519–13529 (1991)
Levade, T., Gatt, S., Salvayre, R.: Uptake and degradation of several pyrenesphingomyelins by skin fibroblasts from control subjects and patients with Niemann–Pick disease. Effect of the structure of the fluorescent fatty acyl residue. Biochem. J. 275(Pt 1), 211–217 (1991)
Koivusalo, M., Jansen, M., Somerharju, P., Ikonen, E.: Endocytic trafficking of sphingomyelin depends on its acyl chain length. Mol. Biol. Cell 18, 5113–5123 (2007). doi:10.1091/mbc.E07-04-0330
Kuerschner, L., Ejsing, C.S., Ekroos, K., Shevchenko, A., Anderson, K.I., Thiele, C.: Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45 (2005). doi:10.1038/nmeth728
Mayor, S., Presley, J.F., Maxfield, F.R.: Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993). doi:10.1083/jcb.121.6.1257
van Ijzendoorn, S.C., Hoekstra, D.: The subapical compartment: a novel sorting centre. Trends Cell Biol 9, 144–149 (1999). doi:10.1016/S0962-8924(99)01512-3
van Ijzendoorn, S.C., Hoekstra, D.: Polarized sphingolipid transport from the subapical compartment: evidence for distinct sphingolipid domains. Mol. Biol. Cell 10, 3449–3461 (1999)
Maier, O., Hoekstra, D.: Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids. J. Biol. Chem. 278, 164–173 (2003). doi:10.1074/jbc.M208259200
Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.L., et al.: Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002)
Zerial, M., McBride, H.: Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001). doi:10.1038/35052055
Choudhury, A., Sharma, D.K., Marks, D.L., Pagano, R.E.: Elevated endosomal cholesterol levels in Niemann–Pick cells inhibit rab4 and perturb membrane recycling. Mol. Biol. Cell 15, 4500–4511 (2004). doi:10.1091/mbc.E04-05-0432
van der Sluijs, P., Hull, M., Webster, P., Male, P., Goud, B., Mellman, I.: The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992). doi:10.1016/0092-8674(92)90307-X
Sheff, D.R., Daro, E.A., Hull, M., Mellman, I.: The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999). doi:10.1083/jcb.145.1.123
Hao, M., Maxfield, F.R.: Characterization of rapid membrane internalization and recycling. J. Biol. Chem. 275, 15279–15286 (2000). doi:10.1074/jbc.275.20.15279
Goldstein, J.L., Brown, M.S., Anderson, R.G., Russell, D.W., Schneider, W.J.: Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1, 1–39 (1985). doi:10.1146/annurev.cb.01.110185.000245
Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., et al.: Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat. Cell Biol. 1, 386–388 (1999). doi:10.1038/14084
Kobayashi, T., Beuchat, M.H., Lindsay, M., Frias, S., Palmiter, R.D., Sakuraba, H., et al.: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat. Cell Biol. 1, 113–118 (1999). doi:10.1038/15666
Lange, Y., Steck, T.L.: Cholesterol homeostasis. Modulation by amphiphiles. J. Biol. Chem. 269, 29371–29374 (1994)
Liscum, L., Underwood, K.W.: Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270, 15443–15446 (1995). doi:10.1074/jbc.270.26.15443
Makino, A., Ishii, K., Murate, M., Hayakawa, T., Suzuki, Y., Suzuki, M., et al.: d-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains. Biochemistry 45, 4530–4541 (2006). doi:10.1021/bi052104y
Kobayashi, T., Stang, E., Fang, K.S., de Moerloose, P., Parton, R.G., Gruenberg, J.: A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998). doi:10.1038/32440
Hayakawa, T., Makino, A., Murate, M., Sugimoto, I., Hashimoto, Y., Takahashi, H., et al.: pH-dependent formation of membranous cytoplasmic body-like structure of ganglioside G(M1)/bis(monoacylglycero)phosphate mixed membranes. Biophys. J. 92, L13–L16 (2007). doi:10.1529/biophysj.106.098657
Delton-Vandenbroucke, I., Bouvier, J., Makino, A., Besson, N., Pageaux, J.F., Lagarde, M., et al.: Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages. J. Lipid Res. 48, 543–552 (2007). doi:10.1194/jlr.M600266-JLR200
Chevallier, J., Chamoun, Z., Jiang, G., Prestwich, G., Sakai, N., Matile, S., et al.: Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. In press (2008)
Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D.: The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York (2001)
Futerman, A.H., van Meer, G.: The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004). doi:10.1038/nrm1423
Chen, C.S., Bach, G., Pagano, R.E.: Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc. Natl. Acad. Sci. U. S. A. 95, 6373–6378 (1998). doi:10.1073/pnas.95.11.6373
Maxfield, F.R., Tabas, I.: Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005). doi:10.1038/nature04399
Chang, T.Y., Chang, C.C., Ohgami, N., Yamauchi, Y.: Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006). doi:10.1146/annurev.cellbio.22.010305.104656
Pipalia, N.H., Hao, M., Mukherjee, S., Maxfield, F.R.: Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann–Pick type C1 defect. Traffic 8, 130–141 (2007). doi:10.1111/j.1600-0854.2006.00513.x
Sato, S.B., Ishii, K., Makino, A., Iwabuchi, K., Yamaji-Hasegawa, A., Senoh, Y., et al.: Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279, 23790–23796 (2004). doi:10.1074/jbc.M313568200
Pfeffer, S.R.: Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001). doi:10.1016/S0962-8924(01)02147-X
Seabra, M.C., Mules, E.H., Hume, A.N.: Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8, 23–30 (2002). doi:10.1016/S1471-4914(01)02227-4
Schuchman, E.H., Desnick, R.J.: Niemann–Pick disease typeA and B: acid sphingomyelinase deficiencies. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D. (eds.) The metabolic and molecular basis of inherited disease, 8th edn., vol. III, pp. 3589–3610. McGraw-Hill, New York (2001)
Lebrand, C., Corti, M., Goodson, H., Cosson, P., Cavalli, V., Mayran, N., et al.: Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002). doi:10.1093/emboj/21.6.1289
Ganley, I.G., Pfeffer, S.R.: Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J. Biol. Chem. 281, 17890–17899 (2006). doi:10.1074/jbc.M601679200
Holtta-Vuori, M., Tanhuanpaa, K., Mobius, W., Somerharju, P., Ikonen, E.: Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol. Biol. Cell 13, 3107–3122 (2002). doi:10.1091/mbc.E02-01-0025
Narita, K., Choudhury, A., Dobrenis, K., Sharma, D.K., Holicky, E.L., Marks, D.L., et al.: Protein transduction of Rab9 in Niemann–Pick C cells reduces cholesterol storage. FASEB J. 19, 1558–1560 (2005)
Linder, M.D., Uronen, R.L., Holtta-Vuori, M., van der Sluijs, P., Peranen, J., Ikonen, E.: Rab8-dependent recycling promotes endosomal cholesterol removal in normal and sphingolipidosis cells. Mol. Biol. Cell 18, 47–56 (2007). doi:10.1091/mbc.E06-07-0575
Manes, S., Martinez, A.C.: Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol. 14, 275–278 (2004). doi:10.1016/j.tcb.2004.04.008
Golub, T., Pico, C.: Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp. (72), 119–127 (2005)
Acknowledgements
We are grateful to Françoise Hullin-Matsuda for critically reading the manuscript. The authors’ work was supported by grants from the Ministry of Education, Science, Sports, and Culture of Japan and Bioarchitect Project of RIKEN.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Takahashi, M., Kobayashi, T. Cholesterol regulation of rab-mediated sphingolipid endocytosis. Glycoconj J 26, 705–710 (2009). https://doi.org/10.1007/s10719-008-9191-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10719-008-9191-z