Skip to main content

Cholesterol regulation of rab-mediated sphingolipid endocytosis

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Despite a tight regulation of its intracellular content, cholesterol is found accumulated in pathological conditions such as sphingolipidosis as well as after cell treatment with drugs like hydrophobic amines. Furthermore, cellular cholesterol increases when cultured cells approach confluence. Under these conditions, the endocytic pathways of plasma membrane sphingolipids are differently affected. In this short review, we will summarize recent results from our laboratory as well as those of other groups, indicating that the intracellular accumulation of cholesterol inhibits the dissociation of rab GTPases from the target membranes, causing the alteration of rab-mediated membrane traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hirabayashi, Y., Igarashi, Y., Merrill, A.H., Jr. (eds.): Sphingolipid biology. Springer, Tokyo (2006)

  2. Gahmberg, C.G., Laine, R.A.: Special issue of glycobiology and sphingobiology. Biochim. Biophys. Acta 1780, 323–625 (2008)

    CAS  Google Scholar 

  3. Simons, K., Vaz, W.L.: Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004). doi:10.1146/annurev.biophys.32.110601.141803

    Article  PubMed  CAS  Google Scholar 

  4. Hullin-Matsuda, F., Kobayashi, T.: Monitoring the distribution and dynamics of signaling microdomains in living cells with lipid-specific probes. Cell. Mol. Life Sci. 64, 2492–2504 (2007). doi:10.1007/s00018-007-7281-x

    Article  PubMed  CAS  Google Scholar 

  5. Hannun, Y.A., Obeid, L.M.: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008). doi:10.1038/nrm2329

    Article  PubMed  CAS  Google Scholar 

  6. Puri, V., Watanabe, R., Singh, R.D., Dominguez, M., Brown, J.C., Wheatley, C.L., et al.: Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547 (2001). doi:10.1083/jcb.200102084

    Article  PubMed  CAS  Google Scholar 

  7. Ikonen, E.: Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008). doi:10.1038/nrm2336

    Article  PubMed  CAS  Google Scholar 

  8. London, E.: How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim. Biophys. Acta 1746, 203–220 (2005). doi:10.1016/j.bbamcr.2005.09.002

    Article  PubMed  CAS  Google Scholar 

  9. Ramstedt, B., Slotte, J.P.: Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim. Biophys. Acta 1758, 1945–1956 (2006). doi:10.1016/j.bbamem.2006.05.020

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S.: Protein sensors for membrane sterols. Cell 124, 35–46 (2006). doi:10.1016/j.cell.2005.12.022

    Article  PubMed  CAS  Google Scholar 

  11. Pagano, R.E.: Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 885–891 (2003). doi:10.1098/rstb.2003.1275

    Article  PubMed  CAS  Google Scholar 

  12. Mukherjee, S., Maxfield, F.R.: Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004)

    PubMed  CAS  Google Scholar 

  13. Chang, T.Y., Reid, P.C., Sugii, S., Ohgami, N., Cruz, J.C., Chang, C.C.: Niemann–Pick type C disease and intracellular cholesterol trafficking. J. Biol. Chem. 280, 20917–20920 (2005). doi:10.1074/jbc.R400040200

    Article  PubMed  CAS  Google Scholar 

  14. Cansell, M., Gouygou, J.P., Jozefonvicz, J., Letourneur, D.: Lipid composition of cultured endothelial cells in relation to their growth. Lipids 32, 39–44 (1997). doi:10.1007/s11745-997-0006-3

    Article  PubMed  CAS  Google Scholar 

  15. Corvera, S., DiBonaventura, C., Shpetner, H.S.: Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. J. Biol. Chem. 275, 31414–31421 (2000). doi:10.1074/jbc.M001708200

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi, M., Murate, M., Fukuda, M., Sato, S.B., Ohta, A., Kobayashi, T.: Cholesterol controls lipid endocytosis through Rab11. Mol. Biol. Cell 18, 2667–2677 (2007). doi:10.1091/mbc.E06-10-0924

    Article  PubMed  CAS  Google Scholar 

  17. Pagano, R.E., Chen, C.S.: Use of BODIPY-labeled sphingolipids to study membrane traffic along the endocytic pathway. Ann. N. Y. Acad. Sci. 845, 152–160 (1998). doi:10.1111/j.1749-6632.1998.tb09668.x

    Article  PubMed  CAS  Google Scholar 

  18. Ghidoni, R., Sala, G., Giuliani, A.: Use of sphingolipid analogs: benefits and risks. Biochim. Biophys. Acta 1439, 17–39 (1999)

    PubMed  CAS  Google Scholar 

  19. Sandvig, K., van Deurs, B.: Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966 (1996)

    PubMed  CAS  Google Scholar 

  20. Johannes, L., Goud, B.: Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum. Trends Cell Biol. 8, 158–162 (1998). doi:10.1016/S0962-8924(97)01209-9

    Article  PubMed  CAS  Google Scholar 

  21. Levade, T., Gatt, S., Maret, A., Salvayre, R.: Different pathways of uptake and degradation of sphingomyelin by lymphoblastoid cells and the potential participation of the neutral sphingomyelinase. J. Biol. Chem. 266, 13519–13529 (1991)

    PubMed  CAS  Google Scholar 

  22. Levade, T., Gatt, S., Salvayre, R.: Uptake and degradation of several pyrenesphingomyelins by skin fibroblasts from control subjects and patients with Niemann–Pick disease. Effect of the structure of the fluorescent fatty acyl residue. Biochem. J. 275(Pt 1), 211–217 (1991)

    PubMed  CAS  Google Scholar 

  23. Koivusalo, M., Jansen, M., Somerharju, P., Ikonen, E.: Endocytic trafficking of sphingomyelin depends on its acyl chain length. Mol. Biol. Cell 18, 5113–5123 (2007). doi:10.1091/mbc.E07-04-0330

    Article  PubMed  CAS  Google Scholar 

  24. Kuerschner, L., Ejsing, C.S., Ekroos, K., Shevchenko, A., Anderson, K.I., Thiele, C.: Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45 (2005). doi:10.1038/nmeth728

    Article  PubMed  CAS  Google Scholar 

  25. Mayor, S., Presley, J.F., Maxfield, F.R.: Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121, 1257–1269 (1993). doi:10.1083/jcb.121.6.1257

    Article  PubMed  CAS  Google Scholar 

  26. van Ijzendoorn, S.C., Hoekstra, D.: The subapical compartment: a novel sorting centre. Trends Cell Biol 9, 144–149 (1999). doi:10.1016/S0962-8924(99)01512-3

    Article  PubMed  Google Scholar 

  27. van Ijzendoorn, S.C., Hoekstra, D.: Polarized sphingolipid transport from the subapical compartment: evidence for distinct sphingolipid domains. Mol. Biol. Cell 10, 3449–3461 (1999)

    PubMed  Google Scholar 

  28. Maier, O., Hoekstra, D.: Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids. J. Biol. Chem. 278, 164–173 (2003). doi:10.1074/jbc.M208259200

    Article  PubMed  CAS  Google Scholar 

  29. Choudhury, A., Dominguez, M., Puri, V., Sharma, D.K., Narita, K., Wheatley, C.L., et al.: Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann–Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002)

    PubMed  CAS  Google Scholar 

  30. Zerial, M., McBride, H.: Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001). doi:10.1038/35052055

    Article  PubMed  CAS  Google Scholar 

  31. Choudhury, A., Sharma, D.K., Marks, D.L., Pagano, R.E.: Elevated endosomal cholesterol levels in Niemann–Pick cells inhibit rab4 and perturb membrane recycling. Mol. Biol. Cell 15, 4500–4511 (2004). doi:10.1091/mbc.E04-05-0432

    Article  PubMed  CAS  Google Scholar 

  32. van der Sluijs, P., Hull, M., Webster, P., Male, P., Goud, B., Mellman, I.: The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992). doi:10.1016/0092-8674(92)90307-X

    Article  PubMed  Google Scholar 

  33. Sheff, D.R., Daro, E.A., Hull, M., Mellman, I.: The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–139 (1999). doi:10.1083/jcb.145.1.123

    Article  PubMed  CAS  Google Scholar 

  34. Hao, M., Maxfield, F.R.: Characterization of rapid membrane internalization and recycling. J. Biol. Chem. 275, 15279–15286 (2000). doi:10.1074/jbc.275.20.15279

    Article  PubMed  CAS  Google Scholar 

  35. Goldstein, J.L., Brown, M.S., Anderson, R.G., Russell, D.W., Schneider, W.J.: Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1, 1–39 (1985). doi:10.1146/annurev.cb.01.110185.000245

    Article  PubMed  CAS  Google Scholar 

  36. Puri, V., Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., et al.: Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat. Cell Biol. 1, 386–388 (1999). doi:10.1038/14084

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi, T., Beuchat, M.H., Lindsay, M., Frias, S., Palmiter, R.D., Sakuraba, H., et al.: Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat. Cell Biol. 1, 113–118 (1999). doi:10.1038/15666

    Article  PubMed  CAS  Google Scholar 

  38. Lange, Y., Steck, T.L.: Cholesterol homeostasis. Modulation by amphiphiles. J. Biol. Chem. 269, 29371–29374 (1994)

    PubMed  CAS  Google Scholar 

  39. Liscum, L., Underwood, K.W.: Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270, 15443–15446 (1995). doi:10.1074/jbc.270.26.15443

    Article  PubMed  CAS  Google Scholar 

  40. Makino, A., Ishii, K., Murate, M., Hayakawa, T., Suzuki, Y., Suzuki, M., et al.: d-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains. Biochemistry 45, 4530–4541 (2006). doi:10.1021/bi052104y

    Article  PubMed  CAS  Google Scholar 

  41. Kobayashi, T., Stang, E., Fang, K.S., de Moerloose, P., Parton, R.G., Gruenberg, J.: A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998). doi:10.1038/32440

    Article  PubMed  CAS  Google Scholar 

  42. Hayakawa, T., Makino, A., Murate, M., Sugimoto, I., Hashimoto, Y., Takahashi, H., et al.: pH-dependent formation of membranous cytoplasmic body-like structure of ganglioside G(M1)/bis(monoacylglycero)phosphate mixed membranes. Biophys. J. 92, L13–L16 (2007). doi:10.1529/biophysj.106.098657

    Article  PubMed  CAS  Google Scholar 

  43. Delton-Vandenbroucke, I., Bouvier, J., Makino, A., Besson, N., Pageaux, J.F., Lagarde, M., et al.: Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages. J. Lipid Res. 48, 543–552 (2007). doi:10.1194/jlr.M600266-JLR200

    Article  PubMed  CAS  Google Scholar 

  44. Chevallier, J., Chamoun, Z., Jiang, G., Prestwich, G., Sakai, N., Matile, S., et al.: Lysobisphosphatidic acid controls endosomal cholesterol levels. J. Biol. Chem. In press (2008)

  45. Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D.: The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  46. Futerman, A.H., van Meer, G.: The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004). doi:10.1038/nrm1423

    Article  PubMed  CAS  Google Scholar 

  47. Chen, C.S., Bach, G., Pagano, R.E.: Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc. Natl. Acad. Sci. U. S. A. 95, 6373–6378 (1998). doi:10.1073/pnas.95.11.6373

    Article  PubMed  CAS  Google Scholar 

  48. Maxfield, F.R., Tabas, I.: Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005). doi:10.1038/nature04399

    Article  PubMed  CAS  Google Scholar 

  49. Chang, T.Y., Chang, C.C., Ohgami, N., Yamauchi, Y.: Cholesterol sensing, trafficking, and esterification. Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006). doi:10.1146/annurev.cellbio.22.010305.104656

    Article  PubMed  CAS  Google Scholar 

  50. Pipalia, N.H., Hao, M., Mukherjee, S., Maxfield, F.R.: Sterol, protein and lipid trafficking in Chinese hamster ovary cells with Niemann–Pick type C1 defect. Traffic 8, 130–141 (2007). doi:10.1111/j.1600-0854.2006.00513.x

    Article  PubMed  CAS  Google Scholar 

  51. Sato, S.B., Ishii, K., Makino, A., Iwabuchi, K., Yamaji-Hasegawa, A., Senoh, Y., et al.: Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279, 23790–23796 (2004). doi:10.1074/jbc.M313568200

    Article  PubMed  CAS  Google Scholar 

  52. Pfeffer, S.R.: Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001). doi:10.1016/S0962-8924(01)02147-X

    Article  PubMed  CAS  Google Scholar 

  53. Seabra, M.C., Mules, E.H., Hume, A.N.: Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8, 23–30 (2002). doi:10.1016/S1471-4914(01)02227-4

    Article  PubMed  CAS  Google Scholar 

  54. Schuchman, E.H., Desnick, R.J.: Niemann–Pick disease typeA and B: acid sphingomyelinase deficiencies. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D. (eds.) The metabolic and molecular basis of inherited disease, 8th edn., vol. III, pp. 3589–3610. McGraw-Hill, New York (2001)

    Google Scholar 

  55. Lebrand, C., Corti, M., Goodson, H., Cosson, P., Cavalli, V., Mayran, N., et al.: Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002). doi:10.1093/emboj/21.6.1289

    Article  PubMed  CAS  Google Scholar 

  56. Ganley, I.G., Pfeffer, S.R.: Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J. Biol. Chem. 281, 17890–17899 (2006). doi:10.1074/jbc.M601679200

    Article  PubMed  CAS  Google Scholar 

  57. Holtta-Vuori, M., Tanhuanpaa, K., Mobius, W., Somerharju, P., Ikonen, E.: Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol. Biol. Cell 13, 3107–3122 (2002). doi:10.1091/mbc.E02-01-0025

    Article  PubMed  CAS  Google Scholar 

  58. Narita, K., Choudhury, A., Dobrenis, K., Sharma, D.K., Holicky, E.L., Marks, D.L., et al.: Protein transduction of Rab9 in Niemann–Pick C cells reduces cholesterol storage. FASEB J. 19, 1558–1560 (2005)

    PubMed  CAS  Google Scholar 

  59. Linder, M.D., Uronen, R.L., Holtta-Vuori, M., van der Sluijs, P., Peranen, J., Ikonen, E.: Rab8-dependent recycling promotes endosomal cholesterol removal in normal and sphingolipidosis cells. Mol. Biol. Cell 18, 47–56 (2007). doi:10.1091/mbc.E06-07-0575

    Article  PubMed  CAS  Google Scholar 

  60. Manes, S., Martinez, A.C.: Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol. 14, 275–278 (2004). doi:10.1016/j.tcb.2004.04.008

    Article  PubMed  CAS  Google Scholar 

  61. Golub, T., Pico, C.: Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp. (72), 119–127 (2005)

Download references

Acknowledgements

We are grateful to Françoise Hullin-Matsuda for critically reading the manuscript. The authors’ work was supported by grants from the Ministry of Education, Science, Sports, and Culture of Japan and Bioarchitect Project of RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Kobayashi, T. Cholesterol regulation of rab-mediated sphingolipid endocytosis. Glycoconj J 26, 705–710 (2009). https://doi.org/10.1007/s10719-008-9191-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9191-z

Keywords