Skip to main content

Advertisement

Log in

Internal deletions of transposable elements: the case of Lemi elements

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mobile elements using a “cut and paste” mechanism of transposition (Class II) are frequently prone to internal deletions and the question of the origin of these copies remains elusive. In this study, we looked for copies belonging to the Lemi Family (Tc1-mariner-IS630 SuperFamily) in the plant genomes, and copies within internal deletions were analyzed in detail. Lemi elements are found exclusively in Eudicots, and more than half of the copies have been deleted. All deletions occur between microhomologies (direct repeats from 2 to 13 bp). Copies less than 500 bp long, similar to MITEs, are frequent. These copies seem to result from large deletions occurring between microhomologies present within a region of 300 bp at both extremities of the element. These regions are particularly A/T rich, compared to the internal part of the element, which increases the probability of observing short direct repeats. Most of the molecular mechanisms responsible for double strand break repair are able to induce deletions between microhomologies during the repair process. This could be a quick way to reduce the population of active copies within a genome and, more generally, to reduce the overall activity of the element after it has entered a naive genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achaz G, Coissac E, Viari A, Netter P (2000) Analysis of intrachromosomal duplications in yeast Saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol 17:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Anxolabehere D, Benes H, Nouaud D, Periquet G (1987) Evolutionary steps and transposable elements in Drosophila melanogaster: the missing RP type obtained by genetic transformation. Evolution 41:846–853

    Article  Google Scholar 

  • Auge-Gouillou C, Hamelin MH, Demattei MV, Periquet M, Bigot Y (2001) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265:51–57

    Article  PubMed  CAS  Google Scholar 

  • Bessereau J-L (2006) Transposons in C. elegans. In: WormBook (ed.) The C. elegans research community. WormBook. doi:10.1895/wormbook.1.70.1, http://www.wormbook.org

  • Brookfield JFY (1996) Genetic evidence for repression of somatic P element movements in Drosophila melanogaster consistent with a role for the KP element. Heredity 76:384–391

    Article  PubMed  CAS  Google Scholar 

  • Brunet F, Giraud T, Godin F, Capy P (2002) Do deletions of the Mos1-like elements occur randomly in the Drosophilidae family? J Mol Evol 54:227–234

    Article  PubMed  CAS  Google Scholar 

  • Capy P, Anxolabehere D, Langin T (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet 10:7–12

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta E, Casacuberta JM, Puigdomenech P, Monfort A (1998) Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J 16:79–85

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, Mackay IJ, O’Sullivan DM (2007) The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRNI loci. Genetics 177:2535–2539

    Article  PubMed  CAS  Google Scholar 

  • Daniels SB, Clark SH, Kidwell MG, Chovnick A (1987) Genetics transformation of Drosophila melanogaster with an autonomous P-element: phenotypic and molecular analyses of long-established transformed lines. Genetics 115:711–723

    PubMed  CAS  Google Scholar 

  • De Aguiar D, Hartl DL (1999) Regulatory potential of nonautonomous mariner elements and subfamily crosstalk. Genetica 107:79–85

    Article  PubMed  Google Scholar 

  • Decottignies A (2007) Microhomology-Mediated end joining in fission yeast is repressed by Pku70 and relies on genes involved in homologous recombination. Genetics 176:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Dufresne M, Hua-Van A, Abd el Wahab H, Ben M’Barek S, Kerma GHL, Daboussi MJ (2007) Transposition of a fungal MITE through the action of a Tc1-like transposase. Genetics 175:441–452

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Mouches C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17:730–737

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Zhang X, Wessler SR (eds) (2002) Miniature inverted-repeat transposable elements and their relationship to Eetablished DNA transposons. Mobile DNA II. ASM Press, Washington, DC, USA

    Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    PubMed  CAS  Google Scholar 

  • Galindo MI, Ladeveze V, Lemeunier F, Kalmes R, Periquet G, Pascual L (1995) Spread of the autonomous transposable element hobo in the genome of Drosophila melanogaster. Mol Biol Evol 12:723–734

    PubMed  CAS  Google Scholar 

  • Gao CH, Xiao ML, Ren XD, Hayward A, Yin JM, Wu LK, Fu DH, Li JN (2012) Characterization and functional annotation of nested transposable elements in eukaryotic genomes. Genomics 100:222–230

    Article  PubMed  CAS  Google Scholar 

  • Grover CE, Kim HR, Wing RA, Paterson AH, Wendel JF (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482

    Article  PubMed  CAS  Google Scholar 

  • Guermonprez H, Loot C, Casacuberta JM (2008) Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes. Genetics 180:83–92

    Article  PubMed  CAS  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23:2304–2313

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Daviere JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of Class II transposons. Curr Genet 37:339–347

    Article  PubMed  CAS  Google Scholar 

  • Izsvak Z, Stuwe EE, Fiedler D, Katzer A, Jeggo PA, Ivics Z (2004) Healing the wounds inflicted by Sleeping Beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 13:279–290

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JW, Hartl DL (1985) Coupled instability of two X-linked genes in Drosophila mauritiana: germinal and somatic instability. Genetics 111:57–65

    PubMed  CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang XY, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  PubMed  CAS  Google Scholar 

  • Koga A, Sasaki S, Naruse K, Shimada A, Sakaizumi M (2011) Occurrence of a short variant of the Tol2 transposable element in natural populations of the medaka fish. Genet Res 93:13–21

    Article  CAS  Google Scholar 

  • Ladeveze V, Galindo I, Chaminade N, Pascual L, Periquet G, Lemeunier F (1998) Transmission pattern of hobo transposable element in transgenic lines of Drosophila melanogaster. Genet Res 71:97–107

    Article  PubMed  CAS  Google Scholar 

  • Le Rouzic A, Capy P (2005) The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169:1033–1043

    Article  PubMed  Google Scholar 

  • Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104:19375–19380

    Article  PubMed  Google Scholar 

  • McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  PubMed  CAS  Google Scholar 

  • Rouault JD, Casse N, Chenais B, Hua-Van A, Filee J, Capy P (2009) Automatic classification within families of transposable elements: Application to the mariner Family. Gene 448:227–232

    Article  PubMed  CAS  Google Scholar 

  • Rubin E, Levy AA (1997) Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol 17:6294–6302

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Scavarda NJ, Hartl DL (1987) Germ line abnormalities in Drosophila simulans transformed with the transposable P-element. J Genet 66:1–15

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • The Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:346–399

    Article  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Yang GJ, Nagel DH, Feschotte C, Hancock CN, Wessler SR (2009) Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 325(5946):1391–1394

    Article  PubMed  CAS  Google Scholar 

  • Yant SR, Kay MA (2003) Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 23(23):8505–8518

    Article  PubMed  CAS  Google Scholar 

  • Yu AM, McVey M (2010) Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acid Res 38:5706–5717

    Article  PubMed  CAS  Google Scholar 

  • Yu JH, Marshall K, Yamaguchi M, Haber JE, Weil CF (2004) Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol Cell Biol 24:1351–1364

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Capy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10709_2013_9736_MOESM1_ESM.pdf

Supplementary data - Figure 1: Phylogeny of Lemi copies belonging to the papilionis Tribe. The minimum size of the copies is 2,035 bp. The phylogeny was constructed using the Neighbor-Joining method (default parameters, bootstrap with 1,000 replications) of MEGA. (PDF 57 kb)

10709_2013_9736_MOESM2_ESM.pdf

Supplementary data – Figure 2: Dotplot of mariner and Lemi elements of M. truncaluta (MtLemi1) and A. thaliana (AtLemi1) against themselves using dotmatcher of EMBOSS. (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negoua, A., Rouault, JD., Chakir, M. et al. Internal deletions of transposable elements: the case of Lemi elements. Genetica 141, 369–379 (2013). https://doi.org/10.1007/s10709-013-9736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9736-3

Keywords

Navigation