Skip to main content

Advertisement

Log in

Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors

  • SI: Plant Pathology for Innovative Agroecology
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Protection of crops against plant diseases is crucial in crop production. Agricultural practice and scientific research is confronted with new challenges. Environmentally friendly and sustainable solutions are increasingly demanded. Therefore, the precise detection of primary infection sites and disease dynamics is fundamental to make a decision for a subsequent management practice. In this context, optical sensors can provide an accurate and objective detection of plant diseases. This has awoken the interest and expectation from the public, farmers, and companies for sophisticated optical sensors in agriculture, providing promising solutions. Nevertheless, the application of optical sensors in a practical context in the field is still challenging, and sophisticated data analysis methods have to be developed. In general, the entire system pipeline, consisting of the type of sensor, the platform carrying the sensor, and the decision making process by data analysis has to be tailored to the specific problem. Here, we briefly recount the possibilities and challenges using optical sensors in research and practice for plant disease protection. Optical sensor-based approaches are considered as a key element in plant phenotyping. This overview addresses mainly hyperspectral imaging as it determines several plant parameters that represent the basis for more specific sensors in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al Masri, A., Hau, B., Dehne, H.-W., Mahlein, A.-K., & Oerke, E.-C. (2017). Impact of primary infection site of Fusarium species on head blight development in wheat ears evaluated by IR-thermography. European Journal of Plant Pathology, 147, 855–868.

    Article  Google Scholar 

  • Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., Salvucci, M. E., & White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41, 68–79.

    Article  Google Scholar 

  • Arens, N., Backhaus, A., Döll, S., Fischer, S., Seiffert, U., & Mock, H. P. (2016). Non-invasive presymptomatic detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet. Frontiers in Plant Science, 7, 1377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bebber, D. P., Holmes, T., & Gurr, S. J. (2014). The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23, 1398–1407.

    Article  Google Scholar 

  • Behmann, J., Mahlein, A. K., Rumpf, T., Römer, C., & L. P. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture, 16, 239–260.

  • Behmann, J., Mahlein, A.-K., Paulus, S., Dupuis, J., Kuhlmann, H., Oerke, E.-C., & Plümer, L. (2016). Generation and application of hyperspectral 3D plant models: Methods and challenges. Machine Vision and Applications, 27, 611–624.

    Article  Google Scholar 

  • Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., Bohnenkamp, D., Kuska, M. T., Jussila, J., Salo, H., Mahlein, A.-K., & Rascher, W. (2018). Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors, 18, 441.

    Article  CAS  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107.

    Article  Google Scholar 

  • Delalieux, S., Aardt, J., Keulemans, W., Schrevens, E., & Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non parametric statistical approaches and physiological implications. European Journal of Agronomy, 27, 130–143.

    Article  Google Scholar 

  • Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64, 267–291.

    Article  CAS  PubMed  Google Scholar 

  • Furbank, R. T., & Tester, M. (2011). Phenomics - technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143, 105–117.

    Article  CAS  Google Scholar 

  • Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 625–632.

    Article  Google Scholar 

  • Grieve, B., Hammersley, S., Mahlein, A.-K., Oerke, E.-C., & Goldbach, H. (2015). Localized multispectral crop imaging sensors: Engineering & validation of a cost effective plant stress and disease sensor. In: IEEE sensors applications symposium (SAS), pp. 1–6.

  • Hallau, L., Neumann, M., Blatt, B., Kleinhenz, B., Klein, T., Kuhn, C., Röhring, M., Bauckhage, C., Kersting, K., Mahlein, A-K., Steiner, U., & Oerke, E-C. (2018). Automated identification of sugar beet diseases using smartphones. Plant Pathology, 67, 399–410.

  • Hillnhütter, C., Mahlein, A.-K., Sikora, R. A., & Oerke, E.-C. (2011). Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet field. Field Crops Research, 122, 70–77.

    Article  Google Scholar 

  • Kersting, K., Bauckhage, C., Wahabzada, M., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Römer, C., & Plümer, L. (2016). Feeding the world with big data: Uncovering spectral characteristics and dynamics of stressed plants. In J. Lässig, K. Kersting, & K. Morik (Eds.), Computational Sustainability (pp. 99–120). Cham: Springer International Publishing.

    Google Scholar 

  • Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, E.-C., Steiner, U., & Mahlein, A.-K. (2015). Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods, 11, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuska, M. T., Brugger, A., Thomas, S., Wahabzada, M., Kersting, K., Oerke, E.-C., Steiner, U., & Mahlein, A.-K. (2017). Spectral patterns reveal early resistance reactions of barley against Blumeria graminis f. sp. hordei. Phytopathology, 107, 1388–1398.

    Article  CAS  PubMed  Google Scholar 

  • Mahlein, A.-K. (2016). Plant disease detection by imaging sensors - parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease, (2), 241–251.

  • Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., & Oerke, E.-C. (2012). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahlein, A.- K., Rumpf, T., Dehne, H.-W., Plümer, L., Steiner, U., & Oerke, E.-C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30.

  • Moshou, D., Pantazi, X. E., Oberti, R., Bravo, C., West, J., Ramon, H., & Mouazen, A. M. (2015). Crop health condition monitoring based on the identification of biotic and abiotic stresses by using hierarchical self-organizing classifiers. In J. V. Stafford (Ed.), Precision agriculture´15 (pp. 619–626). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Mueller-Sim, T., Jenkins, M., Abel, J., & Kantor, G. (2017) The robotanist: A ground-based agriculture robot for high-throughput crop phenotyping. IEEE International Conference on Robotics and Automation, Singapore, pp. 3634–3639.

  • Mulla, D. J. (2012). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114, 358–371.

    Article  Google Scholar 

  • Nutter, F. W., Esker, P. D., & Netto, R. A. C. (2006). Disease assessment concepts and the advancements made in improving the accuracy and precision of plant disease data. European Journal of Plant Pathology, 115, 95–103.

    Article  Google Scholar 

  • Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8, 1348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto, F., Damm, A., Schickling, A., Panigada, C., Cogliati, S., Müller-Linow, M., Balvora, A., & Rascher, U. (2016). Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant, Cell & Environment, 39, 1500–1512.

    Article  CAS  Google Scholar 

  • Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1–13.

    Article  Google Scholar 

  • Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, R. V., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, N. R., & Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112–123.

    Article  Google Scholar 

  • Simko, I., Jimenez-Berni, J. A., & Sirault, X. R. R. (2017). Phenomic approaches and tools for phytopathologists. Phytopathology, 107, 6–17.

    Article  CAS  PubMed  Google Scholar 

  • Steddom, K., Bredehoeft, M. W., Khan, M., & Rush, C. M. (2005). Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease, 89, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya Y., Hirafuji, M., & Nuske S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148, 1–10.

  • Thenkabail, P. S., Smith, R. B., & de Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.

  • Thomas, S., Kuska, M. T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., & Mahlein, A.-K. (2017). Benefits of hyperspectral imaging for plant disease detection and plant protection – a technical perspective. Journal of Plant Diseases and Protection, 125, 5–20.

    Article  Google Scholar 

  • Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., & Hawkesford, M. J. (2017). Field scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44, 143–153.

    Article  Google Scholar 

  • Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.-C., & Kersting, K. (2016). Plant phenotyping using probabilistic topic models: Uncovering the hyperspectral language of plants. Scientific Reports, 6, 22482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop disease. Annual Review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Duan, L., Chen, G., Xiong, L., & Liu, Q. (2013). Plant phenomics and high-throughput phenotyping: Accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 16, 180–187.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anna Brugger and Dr. Jan Behmann for proofreading and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Kuska.

Ethics declarations

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuska, M.T., Mahlein, AK. Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. Eur J Plant Pathol 152, 987–992 (2018). https://doi.org/10.1007/s10658-018-1464-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1464-1

Keywords

Navigation