Skip to main content

Correlation of Biomarker Expression in Colonic Mucosa with Disease Phenotype in Crohn’s Disease and Ulcerative Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are characterized by chronic intestinal inflammation due to immunological, microbial, and environmental factors in genetically predisposed individuals. Advances in the diagnosis, prognosis, and treatment of IBD require the identification of robust biomarkers that can be used for molecular classification of diverse disease presentations. We previously identified five genes, RELA, TNFAIP3 (A20), PIGR, TNF, and IL8, whose mRNA levels in colonic mucosal biopsies could be used in a multivariate analysis to classify patients with CD based on disease behavior and responses to therapy.

Aim

We compared expression of these five biomarkers in IBD patients classified as having CD or UC, and in healthy controls.

Results

Patients with CD were characterized as having decreased median expression of TNFAIP3, PIGR, and TNF in non-inflamed colonic mucosa as compared to healthy controls. By contrast, UC patients exhibited decreased expression of PIGR and elevated expression of IL8 in colonic mucosa compared to healthy controls. A multivariate analysis combining mRNA levels for all five genes resulted in segregation of individuals based on disease presentation (CD vs. UC) as well as severity, i.e., patients in remission versus those with acute colitis at the time of biopsy.

Conclusion

We propose that this approach could be used as a model for molecular classification of IBD patients, which could further be enhanced by the inclusion of additional genes that are identified by functional studies, global gene expression analyses, and genome-wide association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maher MM. Inflammatory bowel disease: review and future view. Front Biosci (Elite Ed). 2012;4:1638–1647.

    Article  Google Scholar 

  2. Foersch S, Waldner MJ, Neurath MF. Innate and adaptive immunity in inflammatory bowel diseases. Dig Dis. 2013;31:317–320.

    Article  PubMed  Google Scholar 

  3. Van Assche G, Dignass A, Panes J, et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J Crohn’s Colitis. 2010;4:7–27.

    Article  Google Scholar 

  4. Laass MW, Roggenbuck D, Conrad K. Diagnosis and classification of Crohn’s disease. Autoimmun Rev. 2014;13:467–471.

    Article  PubMed  Google Scholar 

  5. Dignass A, Eliakim R, Magro F, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J Crohn’s Colitis. 2012;6:965–990.

    Article  Google Scholar 

  6. Conrad K, Roggenbuck D, Laass MW. Diagnosis and classification of ulcerative colitis. Autoimmun Rev. 2014;13:463–466.

    Article  CAS  PubMed  Google Scholar 

  7. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol. 2013;29:357–362.

    Article  CAS  PubMed  Google Scholar 

  8. Feakins RM. Ulcerative colitis or Crohn’s disease? Pitfalls and problems. Histopathology. 2014;64:317–335.

    Article  PubMed  Google Scholar 

  9. Tontini GE, Vecchi M, Pastorelli L, et al. Differential diagnosis in inflammatory bowel disease colitis: state of the art and future perspectives. World J Gastroenterol. 2015;21:21–46.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Scaldaferri F, Correale C, Gasbarrini A, Danese S. Mucosal biomarkers in inflammatory bowel disease: key pathogenic players or disease predictors? World J Gastroenterol. 2010;16:2616–2625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vermeire S, Van Assche G, Rutgeerts P. Classification of inflammatory bowel disease: the old and the new. Curr Opin Gastroenterol. 2012;28:321–326.

    Article  PubMed  Google Scholar 

  12. Arsenescu R, Bruno ME, Rogier EW, et al. Signature biomarkers in Crohn’s disease: toward a molecular classification. Mucosal Immunol. 2008;1:399–411.

    Article  CAS  PubMed  Google Scholar 

  13. Eckmann L, Neish AS. NF-κB and mucosal homeostasis. Curr Top Microbiol Immunol. 2011;349:145–158. doi:10.1007/82_2010_103.

    CAS  PubMed  Google Scholar 

  14. Pasparakis M. Role of NF-kappaB in epithelial biology. Immunol Rev. 2012;246:346–358.

    Article  PubMed  Google Scholar 

  15. Vereecke L, Sze M, Mc GC, et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med. 2010;207:1513–1523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kolodziej LE, Lodolce JP, Chang JE, et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS One. 2011;6:e26352.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Harhaj EW, Dixit VM. Regulation of NF-κB by deubiquitinases. Immunol Rev. 2012;246:107–124.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012;12:774–785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rhee L, Murphy SF, Kolodziej LE, et al. Expression of TNFAIP3 in intestinal epithelial cells protects from DSS- but not TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2012;303:G220–G227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shembade N, Harhaj EW. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell Mol Immunol. 2012;9:123–130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011;4:598–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Frantz AL, Bruno ME, Rogier EW, et al. Multifactorial patterns of gene expression in colonic epithelial cells predict disease phenotypes in experimental colitis. Inflamm Bowel Dis. 2012;18:2138–2148.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Frantz AL, Rogier EW, Weber CR, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 2012;5:501–512.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Kaetzel CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol Lett. 2014;162:10–21.

    Article  CAS  PubMed  Google Scholar 

  25. Rogier EW, Frantz AL, Bruno MEC, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA. 2014;111:3074–3079.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Slebioda TJ, Kmiec Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediat Inflamm. 2014;2014:325129.

    Article  Google Scholar 

  27. Danese S, Colombel JF, Peyrin-Biroulet L, et al. Review article: the role of anti-TNF in the management of ulcerative colitis—past, present and future. Aliment Pharmacol Ther. 2013;37:855–866.

    Article  CAS  PubMed  Google Scholar 

  28. Oikonomopoulos A, van Deen WK, Hommes DW. Anti-TNF antibodies in inflammatory bowel disease: do we finally know how it works? Curr Drug Targets. 2013;14:1421–1432.

    Article  CAS  PubMed  Google Scholar 

  29. Goncalves NS, Ghaem-Maghami M, Monteleone G, et al. Critical role for tumor necrosis factor alpha in controlling the number of lumenal pathogenic bacteria and immunopathology in infectious colitis. Infect Immun. 2001;69:6651–6659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Corredor J, Yan F, Shen CC, et al. Tumor necrosis factor regulates intestinal epithelial cell migration by receptor-dependent mechanisms. Am J Physiol Cell Physiol. 2003;284:C953–C961.

    Article  CAS  PubMed  Google Scholar 

  31. Bruno MEC, Kaetzel CS. Long-term exposure of the HT-29 human intestinal epithelial cell-line to TNF causes sustained up-regulation of the polymeric Ig receptor and pro-inflammatory genes through transcriptional and post-transcriptional mechanisms. J Immunol. 2005;174:7278–7284.

    Article  CAS  PubMed  Google Scholar 

  32. Dent G, Loweth SC, Hasan AM, Leslie FM. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils. Immunobiology. 2014;219:793–797.

    Article  CAS  PubMed  Google Scholar 

  33. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–1125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19:5–36.

    Google Scholar 

  36. Bruno ME, Frantz AL, Rogier EW, et al. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol. 2011;4:468–478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Murthy AK, Dubose CN, Banas JA, et al. Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J Gastroenterol Hepatol. 2006;21:1372–1380.

    CAS  PubMed  Google Scholar 

  38. Reikvam DH, Derrien M, Islam R, et al. Epithelial-microbial cross-talk in polymeric Ig receptor deficient mice. Eur J Immunol. 2012;42:2959–2970.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIDCR Grant 5P20RR020145 to M.E.C.B. and R.I.A.; NIH Grant AI069027 (and an associated American Recovery and Reinvestment Act supplement) and a Senior Research Award from the Crohn’s and Colitis Foundation of America (CCFA) to C.S.K.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte S. Kaetzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, M.E.C., Rogier, E.W., Arsenescu, R.I. et al. Correlation of Biomarker Expression in Colonic Mucosa with Disease Phenotype in Crohn’s Disease and Ulcerative Colitis. Dig Dis Sci 60, 2976–2984 (2015). https://doi.org/10.1007/s10620-015-3700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3700-2

Keywords