Abstract
Many epithelial tumors grow in the vicinity of or metastasize to adipose tissue. As tumors develop, crosstalk between adipose tissue and cancer cells leads to changes in adipocyte function and paracrine signaling, promoting a microenvironment that supports tumor growth. Over the last decade, it became clear that tumor cells co-opt adipocytes in the tumor microenvironment, converting them into cancer-associated adipocytes (CAA). As adipocytes and cancer cells engage, a metabolic symbiosis ensues that is driven by bi-directional signaling. Many cancers (colon, breast, prostate, lung, ovarian cancer, and hematologic malignancies) stimulate lipolysis in adipocytes, followed by the uptake of fatty acids (FA) from the surrounding adipose tissue. The FA enters the cancer cell through specific fatty acid receptors and binding proteins (e.g., CD36, FATP1) and are used for membrane synthesis, energy metabolism (β-oxidation), or lipid-derived cell signaling molecules (derivatives of arachidonic and linolenic acid). Therefore, blocking adipocyte-derived lipid uptake or lipid-associated metabolic pathways in cancer cells, either with a single agent or in combination with standard of care chemotherapy, might prove to be an effective strategy against cancers that grow in lipid-rich tumor microenvironments.
Similar content being viewed by others
Abbreviations
- ATP:
-
Adenosine triphosphate
- BAT:
-
Brown adipose tissue
- CAA:
-
Cancer-associated adipocytes
- CPT1:
-
Carnitine palmitoyltransferase 1A
- EMT:
-
Epithelial-mesenchymal transition
- FA:
-
Fatty acids
- FABP:
-
Fatty acid-binding protein
- FAT:
-
Fatty acid translocase
- FATP:
-
Fatty acid transport protein
- FAO:
-
Fatty acid oxidation
- Gatm:
-
Glycine amidinotransferase
- HFD:
-
High-fat diet
- MMe:
-
Metabolically activated macrophages
- Mox:
-
Redox-regulatory macrophages
- MAGL:
-
Monoacylglycerol lipase
- miRNA:
-
MicroRNA
- NK:
-
Natural killer
- PDX:
-
Patient-derived xenograft
- PUFA:
-
Polyunsaturated fatty acids
- SAT:
-
Subcutaneous adipose tissue
- SLC27A1:
-
Solute carrier family 27 member 1
- SVF:
-
Stromal vascular fraction
- TAM:
-
Tumor-associated macrophages
- TME:
-
Tumor microenvironment
- Tregs:
-
T regulatory cells
- UCP1:
-
Uncoupling protein 1
- VAT:
-
Visceral adipose tissue
- WAT:
-
White adipose tissue
References
Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., et al. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651
Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010
Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004
Duman, C., Yaqubi, K., Hoffmann, A., Acikgoz, A. A., Korshunov, A., Bendszus, M., et al. (2019). Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metabolism, 30(2), 274–289 e275. https://doi.org/10.1016/j.cmet.2019.04.004.
Reilly, S. M., Hung, C. W., Ahmadian, M., Zhao, P., Keinan, O., Gomez, A. V., et al. (2020). Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nature Metabolism, 2(7), 620–634. https://doi.org/10.1038/s42255-020-0217-6
Thomas, E. L., Saeed, N., Hajnal, J. V., Brynes, A., Goldstone, A. P., Frost, G., et al. (1998). Magnetic resonance imaging of total body fat. J Appl Physiol (1985), 85(5), 1778–1785. https://doi.org/10.1152/jappl.1998.85.5.1778.
Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-Kobayashi, J., et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes, 58(7), 1526–1531. https://doi.org/10.2337/db09-0530
Kahn, C. R., Wang, G., & Lee, K. Y. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. Journal of Clinical Investigation, 129(10), 3990–4000. https://doi.org/10.1172/JCI129187
Vijay, J., Gauthier, M. F., Biswell, R. L., Louiselle, D. A., Johnston, J. J., Cheung, W. A., et al. (2020). Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nature Metabolism, 2(1), 97–109. https://doi.org/10.1038/s42255-019-0152-6
Crewe, C., An, Y. A., & Scherer, P. E. (2017). The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. Journal of Clinical Investigation, 127(1), 74–82. https://doi.org/10.1172/JCI88883
Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K., et al. (2016). Body fatness and cancer–Viewpoint of the IARC working group. New England Journal of Medicine, 375(8), 794–798. https://doi.org/10.1056/NEJMsr1606602
Ringel, A. E., Drijvers, J. M., Baker, G. J., Catozzi, A., Garcia-Canaveras, J. C., Gassaway, B. M., et al. (2020). Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell, 183(7), 1848–1866 e1826. https://doi.org/10.1016/j.cell.2020.11.009.
Maury, E., Ehala-Aleksejev, K., Guiot, Y., Detry, R., Vandenhooft, A., & Brichard, S. M. (2007). Adipokines oversecreted by omental adipose tissue in human obesity. American Journal of Physiology - Endocrinology and Metabolism, 293, E656–E665.
Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323
Arner, P., & Kulyte, A. (2015). MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews: Endocrinology, 11(5), 276–288. https://doi.org/10.1038/nrendo.2015.25
Maguire, O. A., Ackerman, S. E., Szwed, S. K., Maganti, A. V., Marchildon, F., Huang, X., et al. (2021). Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer. Cell Metabolism, 33(3), 499–512 e496. https://doi.org/10.1016/j.cmet.2021.01.018.
Romero, I. L., McCormick, A., McEwen, K. A., Park, S., Karrison, T., Yamada, S. D., et al. (2012). Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstetrics and Gynecology, 119(1), 61–67. https://doi.org/10.1097/AOG.0b013e3182393ab3
Sun, C., Li, X., Guo, E., Li, N., Zhou, B., Lu, H., et al. (2020). MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene, 39(8), 1681–1695. https://doi.org/10.1038/s41388-019-1090-1
Goodwin, P. J., Chen, B. E., Gelmon, K. A., Whelan, T. J., Ennis, M., Lemieux, J., et al. (2022). Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: The MA.32 randomized clinical trial. JAMA, 327(20), 1963–1973. https://doi.org/10.1001/jama.2022.6147.
Kazantzis, M., & Stahl, A. (2012). Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta, 1821(5), 852–857. https://doi.org/10.1016/j.bbalip.2011.09.010
Nath, A., Li, I., Roberts, L. R., & Chan, C. (2015). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Scientific Reports, 5, 14752. https://doi.org/10.1038/srep14752
Nath, A., & Chan, C. (2016). Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Scientific Reports, 6, 18669. https://doi.org/10.1038/srep18669
Hao, Y., Li, D., Xu, Y., Ouyang, J., Wang, Y., Zhang, Y., et al. (2019). Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics, 20(Suppl 7), 195. https://doi.org/10.1186/s12859-019-2734-4
Ladanyi, A., Mukherjee, A., Kenny, H. A., Johnson, A., Mitra, A. K., Sundaresan, S., et al. (2018). Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 37(17), 2285–2301. https://doi.org/10.1038/s41388-017-0093-z
Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41–45. https://doi.org/10.1038/nature20791
Pascual, G., Dominguez, D., Elosua-Bayes, M., Beckedorff, F., Laudanna, C., Bigas, C., et al. (2021). Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 599(7885), 485–490. https://doi.org/10.1038/s41586-021-04075-0
Choi, C. H., Choi, J. J., Park, Y. A., Lee, Y. Y., Song, S. Y., Sung, C. O., et al. (2012). Identification of differentially expressed genes according to chemosensitivity in advanced ovarian serous adenocarcinomas: Expression of GRIA2 predicts better survival. British Journal of Cancer, 107(1), 91–99. https://doi.org/10.1038/bjc.2012.217
Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., et al. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478). https://doi.org/10.1126/scitranslmed.aau5758.
Zhang, M., Di Martino, J. S., Bowman, R. L., Campbell, N. R., Baksh, S. C., Simon-Vermot, T., et al. (2018). Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discovery, 8(8), 1006–1025. https://doi.org/10.1158/2159-8290.CD-17-1371
Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S. W., & Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140, 49–61.
Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492
Eckert, M. A., Coscia, F., Chryplewicz, A., Chang, J. W., Hernandez, K. M., Pan, S., et al. (2019). Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature, 569(7758), 723–728. https://doi.org/10.1038/s41586-019-1173-8
Mukherjee, A., Chiang, C. Y., Daifotis, H. A., Nieman, K. M., Fahrmann, J. F., Lastra, R. R., et al. (2020). Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Research, 80(8), 1748–1761. https://doi.org/10.1158/0008-5472.CAN-19-1999
Xu, A., Wang, Y., Xu, J. Y., Stejskal, D., Tam, S., Zhang, J., et al. (2006). Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clinical Chemistry, 52(3), 405–413. https://doi.org/10.1373/clinchem.2005.062463
Cao, H., Sekiya, M., Ertunc, M. E., Burak, M. F., Mayers, J. R., White, A., et al. (2013). Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metabolism, 17(5), 768–778. https://doi.org/10.1016/j.cmet.2013.04.012
Hao, J., Zhang, Y., Yan, X., Yan, F., Sun, Y., Zeng, J., et al. (2018). Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metabolism, 28(5), 689–705 e685. https://doi.org/10.1016/j.cmet.2018.07.006.
Laurent, V., Guerard, A., Mazerolles, C., Le Gonidec, S., Toulet, A., Nieto, L., et al. (2016). Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nature Communications, 7, 10230. https://doi.org/10.1038/ncomms10230
Louie, S. M., Roberts, L. S., Mulvihill, M. M., Luo, K., & Nomura, D. K. (2013). Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochimica et Biophysica Acta, 1831(10), 1566–1572. https://doi.org/10.1016/j.bbalip.2013.07.008
Fang, M., Shen, Z., Huang, S., Zhao, L., Chen, S., Mak, T. W., et al. (2010). The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell, 143(5), 711–724. https://doi.org/10.1016/j.cell.2010.10.010
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
Kagan, V. E., Mao, G., Qu, F., Angeli, J. P., Doll, S., Croix, C. S., et al. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 13(1), 81–90. https://doi.org/10.1038/nchembio.2238
Wang, T., Fahrmann, J. F., Lee, H., Li, Y. J., Tripathi, S. C., Yue, C., et al. (2018). JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metabolism, 27(6), 1357. https://doi.org/10.1016/j.cmet.2018.04.018
Ye, H., Adane, B., Khan, N., Sullivan, T., Minhajuddin, M., Gasparetto, M., et al. (2016). Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 19(1), 23–37. https://doi.org/10.1016/j.stem.2016.06.001
Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2011). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta, 1807(6), 726–734. https://doi.org/10.1016/j.bbabio.2010.10.022
Iwamoto, H., Abe, M., Yang, Y., Cui, D., Seki, T., Nakamura, M., et al. (2018). Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metabolism, 28(1), 104–117 e105. https://doi.org/10.1016/j.cmet.2018.05.005.
Zhang, Y., Daquinag, A., Amaya-Manzanares, F., Sirin, O., Tseng, C., & Kolonin, M. G. (2012). Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research, 72(20), 5198–5208.
Ackerman, D., Tumanov, S., Qiu, B., Michalopoulou, E., Spata, M., Azzam, A., et al. (2018). Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell Rep, 24(10), 2596–2605 e2595. https://doi.org/10.1016/j.celrep.2018.08.015.
Krist, L. F., Eestermans, I. L., Steenbergen, J. J., Hoefsmit, E. C., Cuesta, M. A., Meyer, S., et al. (1995). Cellular composition of milky spots in the human greater omentum: An immunochemical and ultrastructural study. Anatomical Record, 241(2), 163–174. https://doi.org/10.1002/ar.1092410204
Cui, L., Johkura, K., Liang, Y., Teng, R., Ogiwara, N., Okouchi, Y., et al. (2002). Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell and Tissue Research, 310(3), 321–330. https://doi.org/10.1007/s00441-002-0636-6
Morison, R. (1906). Remarks on some functions of the omentum. British Medical Journal, 1(2350), 76–78. https://doi.org/10.1136/bmj.1.2350.76
Van Vugt, E., Van Rijthoven, E. A., Kamperdijk, E. W., & Beelen, R. H. (1996). Omental milky spots in the local immune response in the peritoneal cavity of rats. Anatomical Record, 244(2), 235–245. https://doi.org/10.1002/(SICI)1097-0185(199602)244:2%3c235::AID-AR11%3e3.0.CO;2-Q
Benezech, C., Luu, N. T., Walker, J. A., Kruglov, A. A., Loo, Y., Nakamura, K., et al. (2015). Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 16(8), 819–828. https://doi.org/10.1038/ni.3215
Shimotsuma, M., Simpson-Morgan, M. W., Takahashi, T., & Hagiwara, A. (1992). Activation of omental milky spots and milky spot macrophages by intraperitoneal administration of a streptococcal preparation, OK-432. Cancer Research, 52(19), 5400–5402.
Sorensen, E. W., Gerber, S. A., Sedlacek, A. L., Rybalko, V. Y., Chan, W. M., & Lord, E. M. (2009). Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunologic Research, 45(2–3), 185–194. https://doi.org/10.1007/s12026-009-8100-2
Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796–1808. https://doi.org/10.1172/JCI19246
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112(12), 1821–1830. https://doi.org/10.1172/JCI19451
Martinez, O., de Victoria, E., Xu, X., Koska, J., Francisco, A. M., Scalise, M., Ferrante, A. W., Jr., et al. (2009). Macrophage content in subcutaneous adipose tissue: Associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes, 58(2), 385–393. https://doi.org/10.2337/db08-0536
Saberi, M., Woods, N. B., de Luca, C., Schenk, S., Lu, J. C., Bandyopadhyay, G., et al. (2009). Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metabolism, 10(5), 419–429. https://doi.org/10.1016/j.cmet.2009.09.006
Arkan, M. C., Hevener, A. L., Greten, F. R., Maeda, S., Li, Z. W., Long, J. M., et al. (2005). IKK-beta links inflammation to obesity-induced insulin resistance. Nature Medicine, 11(2), 191–198. https://doi.org/10.1038/nm1185
Solinas, G., Vilcu, C., Neels, J. G., Bandyopadhyay, G. K., Luo, J. L., Naugler, W., et al. (2007). JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metabolism, 6(5), 386–397. https://doi.org/10.1016/j.cmet.2007.09.011
Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686. https://doi.org/10.1016/j.it.2004.09.015
Kelly, B., & O’Neill, L. A. (2015). Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research, 25(7), 771–784. https://doi.org/10.1038/cr.2015.68
Serbulea, V., Upchurch, C. M., Schappe, M. S., Voigt, P., DeWeese, D. E., Desai, B. N., et al. (2018). Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 115(27), E6254–E6263. https://doi.org/10.1073/pnas.1800544115
Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M. J., & Ferrante, A. W., Jr. (2013). Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metabolism, 18(6), 816–830. https://doi.org/10.1016/j.cmet.2013.11.001
Kratz, M., Coats, B. R., Hisert, K. B., Hagman, D., Mutskov, V., Peris, E., et al. (2014). Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metabolism, 20(4), 614–625. https://doi.org/10.1016/j.cmet.2014.08.010
Krishnan, V., Tallapragada, S., Schaar, B., Kamat, K., Chanana, A. M., Zhang, Y., et al. (2020). Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun Biol, 3(1), 524. https://doi.org/10.1038/s42003-020-01246-z
Etzerodt, A., Moulin, M., Doktor, T. K., Delfini, M., Mossadegh-Keller, N., Bajenoff, M., et al. (2020). Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. Journal of Experimental Medicine, 217(4). https://doi.org/10.1084/jem.20191869.
Tiwari, P., Blank, A., Cui, C., Schoenfelt, K. Q., Zhou, G., Xu, Y., et al. (2019). Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. Journal of Experimental Medicine, 216(6), 1345–1358. https://doi.org/10.1084/jem.20181616
Linde, N., Casanova-Acebes, M., Sosa, M. S., Mortha, A., Rahman, A., Farias, E., et al. (2018). Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 9(1), 21. https://doi.org/10.1038/s41467-017-02481-5
Hao, J., Yan, F., Zhang, Y., Triplett, A., Zhang, Y., Schultz, D. A., et al. (2018). Expression of adipocyte/macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Research, 78(9), 2343–2355. https://doi.org/10.1158/0008-5472.CAN-17-2465
Wensveen, F. M., Jelencic, V., Valentic, S., Sestan, M., Wensveen, T. T., Theurich, S., et al. (2015). NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nature Immunology, 16(4), 376–385. https://doi.org/10.1038/ni.3120
Geller, M. A., Knorr, D. A., Hermanson, D. A., Pribyl, L., Bendzick, L., McCullar, V., et al. (2013). Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy, 15(10), 1297–1306. https://doi.org/10.1016/j.jcyt.2013.05.022
Hermanson, D. L., Bendzick, L., Pribyl, L., McCullar, V., Vogel, R. I., Miller, J. S., et al. (2016). Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells, 34(1), 93–101. https://doi.org/10.1002/stem.2230
Nham, T., Poznanski, S. M., Fan, I. Y., Shenouda, M. M., Chew, M. V., Lee, A. J., et al. (2018). Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunology, Immunotherapy, 67(4), 575–587. https://doi.org/10.1007/s00262-017-2112-x
Sedlacek, A. L., Gerber, S. A., Randall, T. D., van Rooijen, N., Frelinger, J. G., & Lord, E. M. (2013). Generation of a dual-functioning antitumor immune response in the peritoneal cavity. American Journal of Pathology, 183(4), 1318–1328. https://doi.org/10.1016/j.ajpath.2013.06.030
Castriconi, R., Cantoni, C., Della Chiesa, M., Vitale, M., Marcenaro, E., Conte, R., et al. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4120–4125. https://doi.org/10.1073/pnas.0730640100
Yu, J., Wei, M., Becknell, B., Trotta, R., Liu, S., Boyd, Z., et al. (2006). Pro- and antiinflammatory cytokine signaling: Reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity, 24(5), 575–590. https://doi.org/10.1016/j.immuni.2006.03.016
Yaqoob, P., Newsholme, E. A., & Calder, P. C. (1994). Inhibition of natural killer cell activity by dietary lipids. Immunology Letters, 41(2–3), 241–247. https://doi.org/10.1016/0165-2478(94)90140-6
Niavarani, S. R., Lawson, C., Bakos, O., Boudaud, M., Batenchuk, C., Rouleau, S., et al. (2019). Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer, 19(1), 823. https://doi.org/10.1186/s12885-019-6045-y
Michelet, X., Dyck, L., Hogan, A., Loftus, R. M., Duquette, D., Wei, K., et al. (2018). Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology, 19(12), 1330–1340. https://doi.org/10.1038/s41590-018-0251-7
Talukdar, S., Oh, D. Y., Bandyopadhyay, G., Li, D., Xu, J., McNelis, J., et al. (2012). Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Medicine, 18(9), 1407–1412. https://doi.org/10.1038/nm.2885
Elgazar-Carmon, V., Rudich, A., Hadad, N., & Levy, R. (2008). Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. Journal of Lipid Research, 49(9), 1894–1903. https://doi.org/10.1194/jlr.M800132-JLR200
Nijhuis, J., Rensen, S. S., Slaats, Y., van Dielen, F. M., Buurman, W. A., & Greve, J. W. (2009). Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity (Silver Spring), 17(11), 2014–2018. https://doi.org/10.1038/oby.2009.113
Tkalcevic, J., Novelli, M., Phylactides, M., Iredale, J. P., Segal, A. W., & Roes, J. (2000). Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity, 12(2), 201–210. https://doi.org/10.1016/s1074-7613(00)80173-9
Adkison, A. M., Raptis, S. Z., Kelley, D. G., & Pham, C. T. (2002). Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. Journal of Clinical Investigation, 109(3), 363–371. https://doi.org/10.1172/JCI13462
Liu, Z., Shapiro, S. D., Zhou, X., Twining, S. S., Senior, R. M., Giudice, G. J., et al. (2000). A critical role for neutrophil elastase in experimental bullous pemphigoid. Journal of Clinical Investigation, 105(1), 113–123. https://doi.org/10.1172/JCI3693
Jackson-Jones, L. H., Smith, P., Portman, J. R., Magalhaes, M. S., Mylonas, K. J., Vermeren, M. M., et al. (2020). Stromal cells covering omental fat-associated lymphoid clusters trigger formation of neutrophil aggregates to capture peritoneal contaminants. Immunity, 52(4), 700–715 e706. https://doi.org/10.1016/j.immuni.2020.03.011.
Lee, W., Ko, S. Y., Mohamed, M. S., Kenny, H. A., Lengyel, E., & Naora, H. (2019). Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. Journal of Experimental Medicine, 216(1), 176–194. https://doi.org/10.1084/jem.20181170
Cui, C., Chakraborty, K., Tang, X. A., Zhou, G., Schoenfelt, K. Q., Becker, K. M., et al. (2021). Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell, 184(12), 3163–3177 e3121. https://doi.org/10.1016/j.cell.2021.04.016.
Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine, 15(8), 914–920. https://doi.org/10.1038/nm.1964
Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., et al. (2009). Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 15(8), 930–939. https://doi.org/10.1038/nm.2002
Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., et al. (2009). Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine, 15(8), 921–929. https://doi.org/10.1038/nm.2001
Wang, Z., Aguilar, E. G., Luna, J. I., Dunai, C., Khuat, L. T., Le, C. T., et al. (2019). Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nature Medicine, 25(1), 141–151. https://doi.org/10.1038/s41591-018-0221-5
Liu, Y., Metzinger, M. N., Lewellen, K. A., Cripps, S. N., Carey, K. D., Harper, E. I., et al. (2015). Obesity contributes to ovarian cancer metastatic success through increased lipogenesis, enhanced vascularity, and decreased infiltration of M1 macrophages. Cancer Research, 75(23), 5046–5057. https://doi.org/10.1158/0008-5472.CAN-15-0706
Zhang, C., Yue, C., Herrmann, A., Song, J., Egelston, C., Wang, T., et al. (2020). STAT3 activation-induced fatty acid oxidation in CD8(+) T effector cells is critical for obesity-promoted breast tumor growth. Cell Metabolism, 31(1), 148–161 e145. https://doi.org/10.1016/j.cmet.2019.10.013.
Ma, X., Xiao, L., Liu, L., Ye, L., Su, P., Bi, E., et al. (2021). CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metabolism, 33(5), 1001–1012 e1005. https://doi.org/10.1016/j.cmet.2021.02.015.
Funding
This study is funded by DOD pilot award (W81XWH2110376) to Abir Mukherjee (A.M) and NIH grant (R01CA169604, R35CA264619) awarded to Ernst Lengyel (E.L). We thank Gail Isenberg for editing the manuscript. Illustrations were generated using biorender.com.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
E. L. receives research funding for preclinical ovarian cancer studies from Abbvie and Arsenal Bioscience outside of the scope of this work and is co-inventor on a patent proposing to use FABP inhibitors for ovarian cancer treatment. A. M. and A. J. B. have no conflicts to report.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mukherjee, A., Bilecz, A.J. & Lengyel, E. The adipocyte microenvironment and cancer. Cancer Metastasis Rev 41, 575–587 (2022). https://doi.org/10.1007/s10555-022-10059-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10555-022-10059-x