Abstract
Purpose
The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer.
Methods
A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data. Kaplan–Meier survival analysis was performed to validate the prognostic value of a set of 41 previously published survival-associated miRNAs.
Results
All together 2178 samples from four independent datasets were integrated into the system including the expression of 1052 distinct human miRNAs. In addition, the web-tool allows for the selection of patients, which can be filtered by receptors status, lymph node involvement, histological grade, and treatments. The complete analysis tool can be accessed online at: www.kmplot.com/mirpower. We used this tool to analyze a large number of deregulated miRNAs associated with breast cancer features and outcome, and confirmed the prognostic value of 26 miRNAs. A significant correlation in three out of four datasets was validated only for miR-29c and miR-101.
Conclusions
In summary, we established an integrated platform capable to mine all available miRNA data to perform a survival analysis for the identification and validation of prognostic miRNA markers in breast cancer.



Similar content being viewed by others
References
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. doi:10.1002/ijc.29210
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, Senn HJ (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223. doi:10.1093/annonc/mdt303
Dowsett M, Dunbier AK (2008) Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin Cancer Res 14:8019–8026. doi:10.1158/1078-0432.CCR-08-0974
Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159. doi:10.1002/emmm.201100209
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavaré S, Caldas C, Miska EA (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214. doi:10.1186/gb-2007-8-10-r214
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783
Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, Sheldon H, Taylor M, Harris AL, Ragoussis J (2011) microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res 71:5635–5645. doi:10.1158/0008-5472.CAN-11-0489
Volinia S, Croce CM (2013) Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci USA 110:7413–7417. doi:10.1073/pnas.1304977110
van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21. doi:10.1186/s13058-015-0526-y
Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5:1122–1143. doi:10.7150/thno.11543
Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. doi:10.1038/nature11412
Dvinge H, Git A, Gräf S, Salmon-Divon M, Curtis C, Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, Provenzano E, Turashvili G, Green A, Ellis I, Aparicio S, Caldas C (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497:378–382. doi:10.1038/nature12108
de Rinaldis E, Gazinska P, Mera A, Modrusan Z, Fedorowicz GM, Burford B, Gillett C, Marra P, Grigoriadis A, Dornan D, Holmberg L, Pinder S, Tutt A (2013) Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genom 23(14):643. doi:10.1186/1471-2164-14-643
Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, Rønneberg JA, Johnsen H, Navon R, Rødland E, Mäkelä R, Naume B, Perälä M, Kallioniemi O, Kristensen VN, Yakhini Z, Børresen-Dale AL (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6:e16915. doi:10.1371/journal.pone.0016915
Santarpia L, Bottai G, Kelly CM, Győrffy B, Székely B, Pusztai L (2016) Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist 21:1063–1078. doi:10.1634/theoncologist.2015-0369
Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 123:725–731. doi:10.1007/s10549-009-0674-9
Gyorffy B, Lánczky A, Szállási Z (2012) Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 19:197–208. doi:10.1530/ERC-11-0329
Győrffy B, Surowiak P, Budczies J, Lánczky A (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8:e82241. doi:10.1371/journal.pone.0082241
Okada Y, Muramatsu T, Suita N, Kanai M, Kawakami E, Iotchkova V, Soranzo N, Inazawa J, Tanaka T (2016) Significant impact of miRNA-target gene networks on genetics of human complex traits. Sci Rep 6:22223. doi:10.1038/srep22223
Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang Y, Dai Q (2016) WBSMDA: within and between score for MiRNA-disease association prediction. Sci Rep 6:21106. doi:10.1038/srep21106
Meng F, Wang J, Dai E, Yang F, Chen X, Wang S, Yu X, Liu D, Jiang W (2016) Psmir: a database of potential associations between small molecules and miRNAs. Sci Rep 6:19264. doi:10.1038/srep19264
Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Børresen-Dale AL, Santarpia L (2015) A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res 21:1207–1214. doi:10.1158/1078-0432.CCR-14-2011
De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E, Peg V, Losurdo A, Pérez-Garcia J, Masci G, Corsi F, Cortés J, Seoane J, Calin GA, Santarpia L (2015) MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 6:37269–37280. doi:10.18632/oncotarget.5495
Parrella P, Barbano R, Pasculli B, Fontana A, Copetti M, Valori VM, Poeta ML, Perrone G, Righi D, Castelvetere M, Coco M, Balsamo T, Morritti M, Pellegrini F, Onetti-Muda A, Maiello E, Murgo R, Fazio VM (2014) Evaluation of microRNA-10b prognostic significance in a prospective cohort of breast cancer patients. Mol Cancer 13:142. doi:10.1186/1476-4598-13-142
Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, Ye F, Song C, Xie X, Wei W (2015) miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 356:410–417. doi:10.1016/j.canlet.2014.09.028
Gee HE, Camps C, Buffa FM, Colella S, Sheldon H, Gleadle JM, Ragoussis J, Harris AL (2008) MicroRNA-10b and breast cancer metastasis. Nature 455:E8–E9. doi:10.1038/nature07362
Pandey AK, Zhang Y, Zhang S, Li Y, Tucker-Kellogg G, Yang H, Jha S (2015) TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget 6:41290–41306. doi:10.18632/oncotarget.5636
Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, Beringer G, Brikbak NJ, Yuan X, Cantley LC, Richardson AL, Pandolfi PP (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–324. doi:10.1016/j.cell.2013.06.026
Gyorffy B, Gyorffy A, Tulassay Z (2005) The problem of multiple testing and solutions for genome-wide studies. Orv Hetil 146:559–563
Antonov AV, Knight RA, Melino G, Barlev NA, Tsvetkov PO (2013) MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ 20:367. doi:10.1038/cdd.2012.137
Goswami CP, Nakshatri H (2012) PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. J Clin Bioinform 2:23. doi:10.1186/2043-9113-2-23
Aguirre-Gamboa R, Trevino V (2014) SurvMicro: assessment of miRNA-based prognostic signatures for cancer clinical outcomes by multivariate survival analysis. Bioinformatics 30:1630–1632. doi:10.1093/bioinformatics/btu087
Acknowledgments
This study was supported by the Hungarian Scientific Research Fund (OTKA) K 108655 Grant (to B.G.), Associazione Italiana Ricerca sul Cancro (Grant 6251 to L.S.), and Fondazione Italiana Ricerca sul Cancro (FIRC fellowship 18328 to G.B.). The authors are grateful to Laura Paladini for her cooperation in data collection.
Author Contributions
B.G. and L.S. conceived, designed, and supervised the study. B.G., A.L., A.N., and L.S. performed the analysis. G.B., B.G., G.M., and L.S. reviewed the literature. G.B., B.G., A.L., A.N., L.S., and A.S. participated in data interpretation. All authors were involved in writing and reviewing the manuscript, and approved the final manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lánczky, A., Nagy, Á., Bottai, G. et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160, 439–446 (2016). https://doi.org/10.1007/s10549-016-4013-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10549-016-4013-7