Skip to main content

Advertisement

Predicting features of breast cancer with gene expression patterns

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Data from gene expression arrays hold an enormous amount of biological information. We sought to determine if global gene expression in primary breast cancers contained information about biologic, histologic, and anatomic features of the disease in individual patients. Microarray data from the tumors of 129 patients were analyzed for the ability to predict biomarkers [estrogen receptor (ER) and HER2], histologic features [grade and lymphatic-vascular invasion (LVI)], and stage parameters (tumor size and lymph node metastasis). Multiple statistical predictors were used and the prediction accuracy was determined by cross-validation error rate; multidimensional scaling (MDS) allowed visualization of the predicted states under study. Models built from gene expression data accurately predict ER and HER2 status, and divide tumor grade into high-grade and low-grade clusters; intermediate-grade tumors are not a unique group. In contrast, gene expression data is inaccurate at predicting tumor size, lymph node status or LVI. The best model for prediction of nodal status included tumor size, LVI status and pathologically defined tumor subtype (based on combinations of ER, HER2, and grade); the addition of microarray-based prediction to this model failed to improve the prediction accuracy. Global gene expression supports a binary division of ER, HER2, and grade, clearly separating tumors into two categories; intermediate values for these bio-indicators do not define intermediate tumor subsets. Results are consistent with a model of regional metastasis that depends on inherent biologic differences in metastatic propensity between breast cancer subtypes, upon which time and chance then operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102–6114

    Article  PubMed  CAS  Google Scholar 

  2. Davidoff AM, Humphrey PA, Iglehart JD, Marks JR (1991) Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010

    Article  PubMed  CAS  Google Scholar 

  3. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  4. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  PubMed  CAS  Google Scholar 

  5. Dickson RB, Lippman ME (2000) Oncogenes, suppressor genes, and signal transduction. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 281–302

    Google Scholar 

  6. Dickson RB, Stancel GM (2000) Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr 27:135–145

    PubMed  CAS  Google Scholar 

  7. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24, 740 breast cancer cases. Cancer 63:181–187

    Article  PubMed  CAS  Google Scholar 

  8. Fisher B, Bauer M, Wickerham DL et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. Cancer 52:1551–1557

    Article  PubMed  CAS  Google Scholar 

  9. Early Breast Cancer Trialists’ Collaborative Group (1998) Polychemotherapy for early breast cancer: and overview of the randomised trials. Lancet 352:930–942

    Article  Google Scholar 

  10. Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922

    Article  PubMed  CAS  Google Scholar 

  11. Yiangou C, Shousha S, Sinnett HD (1999) Primary tumour characteristics and axillary lymph node status in breast cancer. Br J Cancer 80:1974–1978

    Article  PubMed  CAS  Google Scholar 

  12. Silverstein MJ, Skinner KA, Lomis TJ (2001) Predicting axillary nodal positivity in 2282 patients with breast carcinoma. World J Surg 25:767–772

    Article  PubMed  CAS  Google Scholar 

  13. Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27:1574–1583

    PubMed  CAS  Google Scholar 

  14. Tubiana-Hulin M, Hacene K, Martin PM, Spyratos F (1995) Prognostic factor clustering in breast cancer: biology or chronology? Eur J Cancer 31A:282–283

    Article  PubMed  CAS  Google Scholar 

  15. Lancet (1992) Prognostic factors in breast cancer: biology or chronology? Lancet 340:517–518

    Article  Google Scholar 

  16. Mittra I (1993) Axillary lymph node metastasis in breast cancer: prognostic indicator or lead-time bias? Eur J Cancer 29A:300–302

    Article  PubMed  CAS  Google Scholar 

  17. Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  18. Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

    Article  PubMed  CAS  Google Scholar 

  19. Dhanasekaran SM, Barrette TR, Ghosh D et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  PubMed  CAS  Google Scholar 

  20. Welsh JB, Zarrinkar PP, Sapinoso LM et al (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 98:1176–1181

    Article  PubMed  CAS  Google Scholar 

  21. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  CAS  Google Scholar 

  22. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  23. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  24. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumour subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Klijn JGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  26. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  27. Signoretti S, Di Marcotullio L, Richardson A et al (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633–641

    Article  PubMed  CAS  Google Scholar 

  28. Wang ZC, Lin M, Wei LJ et al (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64:64–71

    Article  PubMed  CAS  Google Scholar 

  29. Matros E, Wang ZC, Richardson AL, Iglehart JD (2004) Genomic approaches in cancer biology. Surgery 136:511–518

    Article  PubMed  Google Scholar 

  30. Zhang X, Lu X, Shi Q et al (2006) Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7:197

    Article  PubMed  CAS  Google Scholar 

  31. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914

    Article  PubMed  CAS  Google Scholar 

  32. Vapnik VN (1999) The nature of statistical learning theory, 2nd edn. Springer, New York

    Google Scholar 

  33. Pittman J, Huang E, Nevins JR, Wang Q, West M (2004) Bayesian analysis of binary prediction tree models. Biostatistics 5:587–601

    Article  PubMed  Google Scholar 

  34. Breiman L (2001) Random forest. Mach learn 45:5–32

    Article  Google Scholar 

  35. Cox TF, Cox MAA (1994) Multidimensional scaling. Chapman and Hall, London

    Google Scholar 

  36. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Google Scholar 

  37. Tian L, Cai T, Goetghebeur E, Wei LJ (2005) Model evaluation based on the distribution of estimated absolute prediction error. Harvard University Biostatistics Working Paper Series. Working Paper 35

  38. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London

    Google Scholar 

  39. West M, Blanchette C, Dressman H et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467

    Article  PubMed  CAS  Google Scholar 

  40. Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27(12):1574–1583

    Article  PubMed  CAS  Google Scholar 

  41. Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922

    Article  PubMed  CAS  Google Scholar 

  42. Rivadeneira DE, Simmons RM, Christos PJ, hanna K, Daly JM, Osborne MP (2000) Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more the 900 patients. J Am Coll Surg 191:1–8

    Article  PubMed  CAS  Google Scholar 

  43. Huang E, Cheng SH, Dressman H et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596

    Article  PubMed  CAS  Google Scholar 

  44. Weigelt B, Wessels LFA, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93:924–932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Breast Cancer Research Foundation (BCRF) and by the Dana-Faber/Harvard SPORE in Breast Cancer from the National Cancer Institute (J.D.I., A.R.), grants ACS-IRG 70-002 and CA23100-22 (X.L), NSFC grant 30625012 and the National Basic Research Program (2004CB518605) of China (X.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegong Zhang or Andrea L. Richardson.

Additional information

Xuesong Lu and Xin Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Lu, X., Wang, Z.C. et al. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 108, 191–201 (2008). https://doi.org/10.1007/s10549-007-9596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9596-6

Keywords