Skip to main content

Advertisement

Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications. PANoptosis is a complex phenomenon caused by three cell death pathways: programmed apoptosis, necroptosis and pyroptosis. The contribution of PANoptosis to diabetes and its complications remains incompletely understood. Non-coding RNA, an important molecule in gene expression regulation, has shown significant regulatory functions in a variety of diseases. This paper reviews the underlying mechanisms of diverse types of non-coding RNAs (including lncRNA, miRNA and circRNA) in regulating PANoptosis and their specific contributions in diabetes, aiming to explore how non-coding RNAs influence PANoptosis and their effects in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

Type 1 diabetes or T1D:

Early-onset autoimmune diabetes

LADA:

Adult latent autoimmune diabetes

RIPKs:

Receptor interacting serine/threonine protein kinases

HMGB:

High mobility group protein 1

TNF-α:

Tumor necrosis factor α

IL-6:

Interleukin-6

IL-1β:

Interleukin-1β

NF-κB:

Nuclear factor κB

AP-1:

Activating protein-1

ncRNAs:

Non-coding RNAs

miRNAs:

MicroRNAs

lncRNAs:

Long-chain non-coding RNAs

circRNAs:

Circular RNAs

IGF2:

Insulin-like growth factor 2

TLRs:

Toll-like receptors

NEAT1:

Nuclear Enriched Abundant Transcript 1

RBPS:

RNA-binding proteins

DN:

Diabetic nephropathy

TGF-β:

Transforming growth factor-β

DR:

Diabetic retinopathy

VEGF:

Vascular endothelial growth factor

DCM:

Diabetic Cardiomyopathy

TUG1:

Taurine up-regulated gene 1

MEG3:

Maternally Expressed Gene 3

References

  1. Churuangsuk C, Hall J, Reynolds A, Griffin SJ, Combet E, Lean MEJ (2022) Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 65(1):14–36

    Article  PubMed  Google Scholar 

  2. Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L (2021) The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications. Front Endocrinol (Lausanne) 12:756581

    Article  PubMed  Google Scholar 

  3. Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K et al (2022) Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci 23(7):3587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kolarić V, Svirčević V, Bijuk R, Zupančič V (2022) Chronic complications of diabetes and quality of life. Acta Clin Croat 61(3):520–527

    PubMed  PubMed Central  Google Scholar 

  5. Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F et al (2022) AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother 146:112563

    Article  PubMed  CAS  Google Scholar 

  6. Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu MG, Gordin D, Fu J, Park K, Li Q, King GL (2024) Protective factors and the pathogenesis of complications in diabetes. Endocr Rev 45(2):227–252

    Article  PubMed  Google Scholar 

  8. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T (2020) Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):110–116

    Article  PubMed  CAS  Google Scholar 

  9. Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R (2021) Autophagy in the diabetic heart: a potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 68:101338

    Article  PubMed  CAS  Google Scholar 

  10. Meng L, Lin H, Huang X, Weng J, Peng F, Wu S (2022) METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 13(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cloete L (2022) Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs Stand 37(1):61–66

    Article  PubMed  Google Scholar 

  12. Yang J, Liu Z (2022) Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne) 13:816400

    Article  PubMed  Google Scholar 

  13. Liu Y, Zhang L, Zhang S, Liu J, Li X, Yang K et al (2023) ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response. Mol Med 29(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang T, Chen Y, Liu Z, Zhou J, Li N, Shan Y et al (2024) Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p. J Cell Mol Med 28(7):e18204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huang S, Xiang C, Song Y (2022) Identification of the shared gene signatures and pathways between sarcopenia and type 2 diabetes mellitus. PLoS ONE 17(3):e0265221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. He ZY, Huang MT, Cui X, Zhou ST, Wu Y, Zhang PH et al (2021) Long noncoding RNA GAS5 accelerates diabetic wound healing and promotes lymphangiogenesis via miR-217/Prox1 axis. Mol Cell Endocrinol 532:111283

    Article  PubMed  CAS  Google Scholar 

  17. Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F (2022) miR-210 hypoxamiR in angiogenesis and diabetes. Antioxid Redox Signal 36(10–12):685–706

    Article  PubMed  CAS  Google Scholar 

  18. Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E et al (2023) Circulating small noncoding RNA profiling as a potential biomarker of atherosclerotic plaque composition in type 1 diabetes. Diabetes Care 46(3):551–560

    Article  PubMed  CAS  Google Scholar 

  19. Cui X, Li Y, Yuan S, Huang Y, Chen X, Han Y et al (2023) Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis pathway. Biol Res 56(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cao Q, Zhang X, Xie F, Li Y, Lin F (2022) Long-noncoding RNA HOXA transcript at the distal tip ameliorates the insulin resistance and hepatic gluconeogenesis in mice with gestational diabetes mellitus via the microRNA-423-5p/wingless-type MMTV integration site family member 7A axis. Bioengineered 13(5):13224–13237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lew JK, Pearson JT, Saw E, Tsuchimochi H, Wei M, Ghosh N et al (2020) Exercise regulates micrornas to preserve coronary and cardiac function in the diabetic heart. Circ Res 127(11):1384–1400

    Article  PubMed  CAS  Google Scholar 

  22. Guo J, Chen Y, Xu J, Li L, Dang W, Xiao F et al (2022) Long noncoding RNA PVT1 regulates the proliferation and apoptosis of ARPE-19 cells in vitro via the miR-1301-3p/KLF7 axis. Cell Cycle 21(15):1590–1598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang H (2021) MicroRNAs, parkinson’s disease, and diabetes mellitus. Int J Mol Sci 22(6):2953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen Q, Jiang FJ, Gao X, Li XY, Xia P (2023) Steatotic hepatocyte-derived extracellular vesicles promote β-cell apoptosis and diabetes via microRNA-126a-3p. Liver Int 43(11):2560–2570

    Article  PubMed  CAS  Google Scholar 

  25. Hu L, Wei S, Wu Y, Li S, Zhu P, Wang X (2021) MicroRNA regulation of the proliferation and apoptosis of Leydig cells in diabetes. Mol Med 27(1):104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Luo R, Jin H, Li L, Hu YX, Xiao F (2020) Long noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium cells induced by high glucose via the miR-93/Nrf2 axis. Am J Pathol 190(9):1813–1822

    Article  PubMed  CAS  Google Scholar 

  27. Huang YN, Chiang SL, Lin YJ, Liu SC, Li YH, Liao YC et al (2021) Long, noncoding RNA SRA induces apoptosis of β-cells by promoting the IRAK1/LDHA/lactate pathway. Int J Mol Sci 22(4):1720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chen H, Guo Y, Cheng X (2021) Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 476(12):4517–4528

    Article  PubMed  CAS  Google Scholar 

  29. Dong Y, Wan G, Peng G, Yan P, Qian C, Li F (2020) Long non-coding RNA XIST regulates hyperglycemia-associated apoptosis and migration in human retinal pigment epithelial cells. Biomed Pharmacother 125:109959

    Article  PubMed  CAS  Google Scholar 

  30. Feng X, Yang X, Zhong Y, Cheng X (2024) The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 42(2):e3968

    Article  PubMed  CAS  Google Scholar 

  31. Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M et al (2023) Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 14:1202463

    Article  PubMed  Google Scholar 

  32. Lv J, Wu Y, Mai Y, Bu S (2020) Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy. J Diabetes Res 2020:3960857

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karagiannopoulos A, Cowan E, Eliasson L (2023) miRNAs in the beta cell-friends or foes? Endocrinology. https://doi.org/10.1210/endocr/bqad040

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pu S, Xu Y, Li X, Yu Z, Zhang Y, Tong X et al (2022) LncRNAS-modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 925:174937

    Article  PubMed  CAS  Google Scholar 

  35. Jiang J, Gao G, Pan Q, Liu J, Tian Y, Zhang X (2022) Circular RNA circHIPK3 is downregulated in diabetic cardiomyopathy and overexpression of circHIPK3 suppresses PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis. Bioengineered 13(3):6272–6279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang T, Li N, Yuan L, Zhao M, Li G, Chen Y et al (2023) MALAT1/miR-185-5p mediated high glucose-induced oxidative stress, mitochondrial injury and cardiomyocyte apoptosis via the RhoA/ROCK pathway. J Cell Mol Med 27(17):2495–2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thipsawat S (2021) Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature. Diab Vasc Dis Res 18(6):14791641211058856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Macvanin M, Obradovic M, Zafirovic S, Stanimirovic J, Isenovic ER (2023) The role of miRNAs in metabolic diseases. Curr Med Chem 30(17):1922–1944

    Article  PubMed  CAS  Google Scholar 

  39. Yao X, Huang X, Chen J, Lin W, Tian J (2024) Roles of non-coding RNA in diabetic cardiomyopathy. Cardiovasc Diabetol 23(1):227

    Article  PubMed  PubMed Central  Google Scholar 

  40. Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K (2020) Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):117–124

    Article  PubMed  CAS  Google Scholar 

  41. Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M (2020) Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol 17(2):188–201

    Article  PubMed  Google Scholar 

  42. Maiese K (2023) Cornerstone cellular pathways for metabolic disorders and diabetes mellitus: non-coding RNAs, Wnt signaling, and AMPK. Cells 12(22):2595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xia L, Song M (2020) Role of non-coding RNA in diabetic cardiomyopathy. Adv Exp Med Biol 1229:181–195

    Article  PubMed  CAS  Google Scholar 

  44. Zhang P, Li YN, Tu S, Cheng XB (2021) SP1-induced lncRNA TUG1 regulates proliferation and apoptosis in islet cells of type 2 diabetes mellitus via the miR-188-3p/FGF5 axis. Eur Rev Med Pharmacol Sci 25(4):1959–1966

    PubMed  CAS  Google Scholar 

  45. Choi JH, Kim HR, Song KH (2022) Musculoskeletal complications in patients with diabetes mellitus. Korean J Intern Med 37(6):1099–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yu Q, Lin J, Ma Q, Li Y, Wang Q, Chen H et al (2022) Long noncoding RNA ENSG00000254693 promotes diabetic kidney disease via interacting with HuR. J Diabetes Res 2022:8679548

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang M, Li Y, Li S, Lv J (2022) Endothelial dysfunction and diabetic cardiomyopathy. Front Endocrinol (Lausanne) 13:851941

    Article  PubMed  Google Scholar 

  48. Calcutt NA (2020) Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain 161(Suppl 1):S65-s86

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sagoo MK, Gnudi L (2020) Diabetic nephropathy: an overview. Methods Mol Biol 2067:3–7

    Article  PubMed  CAS  Google Scholar 

  50. Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER (2023) Diabetic cardiomyopathy: the role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 14:1124613

    Article  PubMed  Google Scholar 

  51. Meng Z, Liang B, Wu Y, Liu C, Wang H, Du Y et al (2023) Hypoadiponectinemia-induced upregulation of microRNA449b downregulating Nrf-1 aggravates cardiac ischemia-reperfusion injury in diabetic mice. J Mol Cell Cardiol 182:1–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tan F, Cao Y, Zheng L, Wang T, Zhao S, Chen J et al (2022) Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. Front Immunol 13:922614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R et al (2022) The generation of PD-L1 and PD-L2 in cancer cells: from nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B 12(3):1041–1053

    Article  PubMed  CAS  Google Scholar 

  54. Yu Q, Zhang N, Gan X, Chen L, Wang R, Liang R et al (2023) EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine 119:154999

    Article  PubMed  CAS  Google Scholar 

  55. Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A et al (2020) Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep 32(2):107881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet A (2020) Diabetic kidney disease: past and present. Adv Anat Pathol 27(2):87–97

    Article  PubMed  Google Scholar 

  57. Zhang Y, Le X, Zheng S, Zhang K, He J, Liu M et al (2022) MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther 13(1):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wang K, Zhou LY, Liu F, Lin L, Ju J, Tian PC et al (2022) PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac(4) C acetylation of Tfec mRNA. Adv Sci (Weinh) 9(8):e2106058

    Article  PubMed  Google Scholar 

  59. Lu Y, Wang W, Liu J, Xie M, Liu Q, Li S (2023) Vascular complications of diabetes: a narrative review. Medicine (Baltimore) 102(40):e35285

    Article  PubMed  Google Scholar 

  60. Liu X, Jiang L, Zeng H, Gao L, Guo S, Chen C et al (2024) Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy. Autophagy 20(5):1072–1097

    Article  PubMed  CAS  Google Scholar 

  61. Turkieh A, El Masri Y, Pinet F, Dubois-Deruy E (2022) Mitophagy regulation following myocardial infarction. Cells. 11(2):199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pérez-Cremades D, Chen J, Assa C, Feinberg MW (2023) MicroRNA-mediated control of myocardial infarction in diabetes. Trends Cardiovasc Med 33(4):195–201

    Article  PubMed  Google Scholar 

  63. Baum P, Toyka KV, Blüher M, Kosacka J, Nowicki M (2021) Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects. Int J Mol Sci 22(19):10835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cheng HS, Pérez-Cremades D, Zhuang R, Jamaiyar A, Wu W, Chen J et al (2023) Impaired angiogenesis in diabetic critical limb ischemia is mediated by a miR-130b/INHBA signaling axis. JCI Insight. https://doi.org/10.1172/jci.insight.163041

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G (2022) Functional role of microRNAs in regulating cardiomyocyte death. Cells. 11(6):983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM (2023) A review of micro RNAs changes in T2DM in animals and humans. J Diabetes 15(8):649–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Huang K, Yu X, Yu Y, Zhang L, Cen Y, Chu J (2020) Long noncoding RNA MALAT1 promotes high glucose-induced inflammation and apoptosis of vascular endothelial cells by regulating miR-361-3p/SOCS3 axis. Int J Clin Exp Pathol 13(5):1243–1252

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Advani A (2020) Acute kidney injury: a bona fide complication of diabetes. Diabetes 69(11):2229–2237

    Article  PubMed  CAS  Google Scholar 

  69. Zhou Y, Zhou C, Wei L, Han C, Cao Y (2022) The ceRNA crosstalk between mRNAs and lncRNAs in diabetes myocardial infarction. Dis Markers 2022:4283534

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maratni NPT, Saraswati MR, Ayu Dewi NN, Suastika K (2023) MIRNA146a and diabetes-related complications: a review. Curr Diabetes Rev 19(9):e141022209958

    Article  PubMed  CAS  Google Scholar 

  71. Luo Y, Liu L, Zhang C (2024) Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing. Comput Biol Med 169:107780

    Article  PubMed  CAS  Google Scholar 

  72. Meir J, Huang L, Mahmood S, Whiteson H, Cohen S, Aronow WS (2024) The vascular complications of diabetes: a review of their management, pathogenesis, and prevention. Expert Rev Endocrinol Metab 19(1):11–20

    Article  PubMed  CAS  Google Scholar 

  73. Wang N, Ding L, Liu D, Zhang Q, Zheng G, Xia X et al (2022) Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Front Endocrinol (Lausanne) 13:918605

    Article  PubMed  Google Scholar 

  74. Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F et al (2021) Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 320(3):C355–C364

    Article  PubMed  CAS  Google Scholar 

  75. Guo X, Xing Y, Jin W (2023) Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 14:1183586

    Article  PubMed  Google Scholar 

  76. Zaino B, Goel R, Devaragudi S, Prakash A, Vaghamashi Y, Sethi Y et al (2023) Diabetic neuropathy: pathogenesis and evolving principles of management. Dis Mon 69(9):101582

    Article  PubMed  Google Scholar 

  77. Zhang Y, Song Z, Li X, Xu S, Zhou S, Jin X et al (2020) Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy. Am J Physiol Cell Physiol 318(2):C346–C359

    Article  PubMed  CAS  Google Scholar 

  78. Lu Y, Lu Y, Meng J, Wang Z (2021) Pyroptosis and Its regulation in diabetic cardiomyopathy. Front Physiol 12:791848

    Article  PubMed  Google Scholar 

  79. Shoeib HM, Keshk WA, Al-Ghazaly GM, Wagih AA, El-Dardiry SA (2023) Interplay between long non-coding RNA MALAT1 and pyroptosis in diabetic nephropathy patients. Gene 851:146978

    Article  PubMed  CAS  Google Scholar 

  80. Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD et al (2022) Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 13(4):358–375

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yu X, Ma X, Lin W, Xu Q, Zhou H, Kuang H (2021) Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342-3p targeting of CASP1 in diabetic retinopathy. Exp Eye Res 202:108300

    Article  PubMed  CAS  Google Scholar 

  82. Zhuang L, Jin G, Qiong W, Ge X, Pei X (2023) Circular RNA COL1A2 mediates high glucose-induced oxidative stress and pyroptosis by regulating MiR-424-5p/SGK1 in diabetic nephropathy. Appl Biochem Biotechnol 195(12):7652–7667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hu B, Chen W, Zhong Y, Tuo Q (2023) The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Front Cardiovasc Med 10:1217985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lee SH, Hyun D, Choi J et al (2023) Adherence to guideline-directed medical therapy and 3-year clinical outcome following acute myocardial infarction. Eur Heart J Open 3:oead029

    Article  PubMed  PubMed Central  Google Scholar 

  85. Braga JGB, de Novais CB, Diniz PP, da Silva Aragão OO, Saggin Júnior OJ, da Conceição JE (2023) Association of mycoheterotrophic gentianaceae with specific glomus lineages. Mycorrhiza 33:249–256

    Article  PubMed  CAS  Google Scholar 

  86. Byrne J, Willis A, Dunkley A et al (2022) Individual, healthcare professional and system-level barriers and facilitators to initiation and adherence to injectable therapies for type 2 diabetes: a systematic review and meta-ethnography. Diabet Med 39:e14678

    Article  PubMed  Google Scholar 

  87. Wang B, Guo H, Liu D et al (2023) ETS1-HMGA2 axis promotes human limbal epithelial stem cell proliferation. Invest Ophthalmol Vis Sci 64:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J (2023) Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med 21(1):223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Fang Z, Li J, Cao F, Li F (2022) Integration of scRNA-Seq and bulk RNA-Seq reveals molecular characterization of the immune microenvironment in acute pancreatitis. Biomolecules 13(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nigita G, Marceca GP, Tomasello L, Distefano R, Calore F, Veneziano D et al (2019) ncRNA editing: functional characterization and computational resources. Methods Mol Biol 1912:133–174

    Article  PubMed  CAS  Google Scholar 

  91. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 346(6213):1258096

    Article  PubMed  Google Scholar 

  92. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Laughery MF, Wyrick JJ (2019) Simple CRISPR-cas9 genome editing in saccharomyces cerevisiae. Curr Protoc Mol Biol 129(1):e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Li X, Bai C, Wang H, Wan T, Li Y (2022) LncRNA MEG3 regulates autophagy and pyroptosis via FOXO1 in pancreatic β-cells. Cell Signal 92:110247

    Article  PubMed  CAS  Google Scholar 

  95. Xi X, Wang M, Chen Q, Ma J, Zhang J, Li Y (2023) DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol 577:112012

    Article  PubMed  CAS  Google Scholar 

  96. Wu Q, Huang F (2023) LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 14:1238981

    Article  PubMed  Google Scholar 

  97. Zhao N, Hua W, Liu Q, Wang Y, Liu Z, Jin S et al (2023) MALAT1 knockdown alleviates the pyroptosis of microglias in diabetic cerebral ischemia via regulating STAT1 mediated NLRP3 transcription. Mol Med 29(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chen C, Chen J, Wang Y, Fang L, Guo C, Sang T et al (2023) Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling. Phytomedicine 110:154626

    Article  PubMed  CAS  Google Scholar 

  99. Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V et al (2021) Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis 12(11):1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Song J, Lv H, Liu B, Hao M, Taylor HS, Zhang X et al (2023) Let-7 suppresses liver fibrosis by inhibiting hepatocyte apoptosis and TGF-β production. Mol Metab 78:101828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Song Y, Guo F, Zhao YY, Ma XJ, Wu LN, Yu JF et al (2023) Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Prolif 56(2):e13349

    Article  PubMed  CAS  Google Scholar 

  102. Tang Q, Markby GR, MacNair AJ, Tang K, Tkacz M, Parys M et al (2023) TGF-β-induced PI3K/AKT/mTOR pathway controls myofibroblast differentiation and secretory phenotype of valvular interstitial cells through the modulation of cellular senescence in a naturally occurring in vitro canine model of myxomatous mitral valve disease. Cell Prolif 56(6):e13435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chien LH, Deng JS, Jiang WP, Chou YN, Lin JG, Huang GJ (2023) Evaluation of lung protection of Sanghuangporus sanghuang through TLR4/NF-κB/MAPK, keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 signaling pathways mediating apoptosis and autophagy. Biomed Pharmacother 165:115080

    Article  PubMed  CAS  Google Scholar 

  104. Ge Q, Shi Z, Zou KA, Ying J, Chen J, Yuan W et al (2023) Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight 8(3):e166688

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures were created with BioRender software (https://www.biorender.com/).

Funding

This review was supported by the National Natural Science Foundation of China [grant number 82160371 to J.Z., 82100869 and 82360162 to P.Y.]; the Natural Science Foundation in Jiangxi Province [grant numbers 20224ACB216009 to J.Z.]; the Jiangxi Province Thousands of Plans [grant number jxsq2023201105 to P.Y.]; Young Elite Scientists Sponsorship Program by JXAST [grant number 2023OT05 to J.Z.], the Hengrui Diabetes Metabolism Research Fund [grant number Z-2017–26-2202–4 to P.Y.], and National College Students Innovation and Entrepreneurship Training Program [grant number 202410403014 to G.H.].

Author information

Authors and Affiliations

Authors

Contributions

All authors have discussed the proposed scope and content of the article before drafting. G.Y.H., K.H.B., and T.F.L. wrote and revised the whole paper. W.T.W., L.O.Y., X.L., and D.J.Z drew and revised the figures. Y.T.W., J.Q.L., J.T.L and Y.X.C. collected literatures. P.Y., J.Z., and R.X. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Rui Xuan, Jing Zhang or Peng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Hu, K., Luo, T. et al. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis (2025). https://doi.org/10.1007/s10495-024-02066-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-02066-w

Keywords