Abstract
Diabetes is a chronic metabolic disease that is endemic worldwide and is characterized by persistent hyperglycemia accompanied by multiple severe complications, including cardiovascular disease, kidney dysfunction, neuropathy, and retinopathy. The pathogenesis of diabetes mellitus and its complications is multifactorial, involving various molecular and cellular pathways. In recent years, research has indicated that mechanisms of cell death play a significant role in the advancement of diabetes and its complications. PANoptosis is a complex phenomenon caused by three cell death pathways: programmed apoptosis, necroptosis and pyroptosis. The contribution of PANoptosis to diabetes and its complications remains incompletely understood. Non-coding RNA, an important molecule in gene expression regulation, has shown significant regulatory functions in a variety of diseases. This paper reviews the underlying mechanisms of diverse types of non-coding RNAs (including lncRNA, miRNA and circRNA) in regulating PANoptosis and their specific contributions in diabetes, aiming to explore how non-coding RNAs influence PANoptosis and their effects in diabetes.
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
Abbreviations
- Type 1 diabetes or T1D:
-
Early-onset autoimmune diabetes
- LADA:
-
Adult latent autoimmune diabetes
- RIPKs:
-
Receptor interacting serine/threonine protein kinases
- HMGB:
-
High mobility group protein 1
- TNF-α:
-
Tumor necrosis factor α
- IL-6:
-
Interleukin-6
- IL-1β:
-
Interleukin-1β
- NF-κB:
-
Nuclear factor κB
- AP-1:
-
Activating protein-1
- ncRNAs:
-
Non-coding RNAs
- miRNAs:
-
MicroRNAs
- lncRNAs:
-
Long-chain non-coding RNAs
- circRNAs:
-
Circular RNAs
- IGF2:
-
Insulin-like growth factor 2
- TLRs:
-
Toll-like receptors
- NEAT1:
-
Nuclear Enriched Abundant Transcript 1
- RBPS:
-
RNA-binding proteins
- DN:
-
Diabetic nephropathy
- TGF-β:
-
Transforming growth factor-β
- DR:
-
Diabetic retinopathy
- VEGF:
-
Vascular endothelial growth factor
- DCM:
-
Diabetic Cardiomyopathy
- TUG1:
-
Taurine up-regulated gene 1
- MEG3:
-
Maternally Expressed Gene 3
References
Churuangsuk C, Hall J, Reynolds A, Griffin SJ, Combet E, Lean MEJ (2022) Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 65(1):14–36
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L (2021) The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications. Front Endocrinol (Lausanne) 12:756581
Nakamura K, Miyoshi T, Yoshida M, Akagi S, Saito Y, Ejiri K et al (2022) Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int J Mol Sci 23(7):3587
Kolarić V, Svirčević V, Bijuk R, Zupančič V (2022) Chronic complications of diabetes and quality of life. Acta Clin Croat 61(3):520–527
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F et al (2022) AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother 146:112563
Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL (2024) Protective factors and the pathogenesis of complications in diabetes. Endocr Rev 45(2):227–252
Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, Titma T (2020) Macrovascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):110–116
Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R (2021) Autophagy in the diabetic heart: a potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 68:101338
Meng L, Lin H, Huang X, Weng J, Peng F, Wu S (2022) METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 13(1):38
Cloete L (2022) Diabetes mellitus: an overview of the types, symptoms, complications and management. Nurs Stand 37(1):61–66
Yang J, Liu Z (2022) Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne) 13:816400
Liu Y, Zhang L, Zhang S, Liu J, Li X, Yang K et al (2023) ATF5 regulates tubulointerstitial injury in diabetic kidney disease via mitochondrial unfolded protein response. Mol Med 29(1):57
Wang T, Chen Y, Liu Z, Zhou J, Li N, Shan Y et al (2024) Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p. J Cell Mol Med 28(7):e18204
Huang S, Xiang C, Song Y (2022) Identification of the shared gene signatures and pathways between sarcopenia and type 2 diabetes mellitus. PLoS ONE 17(3):e0265221
He ZY, Huang MT, Cui X, Zhou ST, Wu Y, Zhang PH et al (2021) Long noncoding RNA GAS5 accelerates diabetic wound healing and promotes lymphangiogenesis via miR-217/Prox1 axis. Mol Cell Endocrinol 532:111283
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F (2022) miR-210 hypoxamiR in angiogenesis and diabetes. Antioxid Redox Signal 36(10–12):685–706
Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E et al (2023) Circulating small noncoding RNA profiling as a potential biomarker of atherosclerotic plaque composition in type 1 diabetes. Diabetes Care 46(3):551–560
Cui X, Li Y, Yuan S, Huang Y, Chen X, Han Y et al (2023) Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis pathway. Biol Res 56(1):5
Cao Q, Zhang X, Xie F, Li Y, Lin F (2022) Long-noncoding RNA HOXA transcript at the distal tip ameliorates the insulin resistance and hepatic gluconeogenesis in mice with gestational diabetes mellitus via the microRNA-423-5p/wingless-type MMTV integration site family member 7A axis. Bioengineered 13(5):13224–13237
Lew JK, Pearson JT, Saw E, Tsuchimochi H, Wei M, Ghosh N et al (2020) Exercise regulates micrornas to preserve coronary and cardiac function in the diabetic heart. Circ Res 127(11):1384–1400
Guo J, Chen Y, Xu J, Li L, Dang W, Xiao F et al (2022) Long noncoding RNA PVT1 regulates the proliferation and apoptosis of ARPE-19 cells in vitro via the miR-1301-3p/KLF7 axis. Cell Cycle 21(15):1590–1598
Wang H (2021) MicroRNAs, parkinson’s disease, and diabetes mellitus. Int J Mol Sci 22(6):2953
Chen Q, Jiang FJ, Gao X, Li XY, Xia P (2023) Steatotic hepatocyte-derived extracellular vesicles promote β-cell apoptosis and diabetes via microRNA-126a-3p. Liver Int 43(11):2560–2570
Hu L, Wei S, Wu Y, Li S, Zhu P, Wang X (2021) MicroRNA regulation of the proliferation and apoptosis of Leydig cells in diabetes. Mol Med 27(1):104
Luo R, Jin H, Li L, Hu YX, Xiao F (2020) Long noncoding RNA MEG3 inhibits apoptosis of retinal pigment epithelium cells induced by high glucose via the miR-93/Nrf2 axis. Am J Pathol 190(9):1813–1822
Huang YN, Chiang SL, Lin YJ, Liu SC, Li YH, Liao YC et al (2021) Long, noncoding RNA SRA induces apoptosis of β-cells by promoting the IRAK1/LDHA/lactate pathway. Int J Mol Sci 22(4):1720
Chen H, Guo Y, Cheng X (2021) Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 476(12):4517–4528
Dong Y, Wan G, Peng G, Yan P, Qian C, Li F (2020) Long non-coding RNA XIST regulates hyperglycemia-associated apoptosis and migration in human retinal pigment epithelial cells. Biomed Pharmacother 125:109959
Feng X, Yang X, Zhong Y, Cheng X (2024) The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 42(2):e3968
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M et al (2023) Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 14:1202463
Lv J, Wu Y, Mai Y, Bu S (2020) Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy. J Diabetes Res 2020:3960857
Karagiannopoulos A, Cowan E, Eliasson L (2023) miRNAs in the beta cell-friends or foes? Endocrinology. https://doi.org/10.1210/endocr/bqad040
Pu S, Xu Y, Li X, Yu Z, Zhang Y, Tong X et al (2022) LncRNAS-modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 925:174937
Jiang J, Gao G, Pan Q, Liu J, Tian Y, Zhang X (2022) Circular RNA circHIPK3 is downregulated in diabetic cardiomyopathy and overexpression of circHIPK3 suppresses PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis. Bioengineered 13(3):6272–6279
Wang T, Li N, Yuan L, Zhao M, Li G, Chen Y et al (2023) MALAT1/miR-185-5p mediated high glucose-induced oxidative stress, mitochondrial injury and cardiomyocyte apoptosis via the RhoA/ROCK pathway. J Cell Mol Med 27(17):2495–2506
Thipsawat S (2021) Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: a review of the literature. Diab Vasc Dis Res 18(6):14791641211058856
Macvanin M, Obradovic M, Zafirovic S, Stanimirovic J, Isenovic ER (2023) The role of miRNAs in metabolic diseases. Curr Med Chem 30(17):1922–1944
Yao X, Huang X, Chen J, Lin W, Tian J (2024) Roles of non-coding RNA in diabetic cardiomyopathy. Cardiovasc Diabetol 23(1):227
Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K (2020) Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 18(2):117–124
Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M (2020) Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol 17(2):188–201
Maiese K (2023) Cornerstone cellular pathways for metabolic disorders and diabetes mellitus: non-coding RNAs, Wnt signaling, and AMPK. Cells 12(22):2595
Xia L, Song M (2020) Role of non-coding RNA in diabetic cardiomyopathy. Adv Exp Med Biol 1229:181–195
Zhang P, Li YN, Tu S, Cheng XB (2021) SP1-induced lncRNA TUG1 regulates proliferation and apoptosis in islet cells of type 2 diabetes mellitus via the miR-188-3p/FGF5 axis. Eur Rev Med Pharmacol Sci 25(4):1959–1966
Choi JH, Kim HR, Song KH (2022) Musculoskeletal complications in patients with diabetes mellitus. Korean J Intern Med 37(6):1099–1110
Yu Q, Lin J, Ma Q, Li Y, Wang Q, Chen H et al (2022) Long noncoding RNA ENSG00000254693 promotes diabetic kidney disease via interacting with HuR. J Diabetes Res 2022:8679548
Wang M, Li Y, Li S, Lv J (2022) Endothelial dysfunction and diabetic cardiomyopathy. Front Endocrinol (Lausanne) 13:851941
Calcutt NA (2020) Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain 161(Suppl 1):S65-s86
Sagoo MK, Gnudi L (2020) Diabetic nephropathy: an overview. Methods Mol Biol 2067:3–7
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER (2023) Diabetic cardiomyopathy: the role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 14:1124613
Meng Z, Liang B, Wu Y, Liu C, Wang H, Du Y et al (2023) Hypoadiponectinemia-induced upregulation of microRNA449b downregulating Nrf-1 aggravates cardiac ischemia-reperfusion injury in diabetic mice. J Mol Cell Cardiol 182:1–14
Tan F, Cao Y, Zheng L, Wang T, Zhao S, Chen J et al (2022) Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. Front Immunol 13:922614
Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R et al (2022) The generation of PD-L1 and PD-L2 in cancer cells: from nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B 12(3):1041–1053
Yu Q, Zhang N, Gan X, Chen L, Wang R, Liang R et al (2023) EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine 119:154999
Bouchareychas L, Duong P, Covarrubias S, Alsop E, Phu TA, Chung A et al (2020) Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo. Cell Rep 32(2):107881
Akhtar M, Taha NM, Nauman A, Mujeeb IB, Al-Nabet A (2020) Diabetic kidney disease: past and present. Adv Anat Pathol 27(2):87–97
Zhang Y, Le X, Zheng S, Zhang K, He J, Liu M et al (2022) MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res Ther 13(1):171
Wang K, Zhou LY, Liu F, Lin L, Ju J, Tian PC et al (2022) PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac(4) C acetylation of Tfec mRNA. Adv Sci (Weinh) 9(8):e2106058
Lu Y, Wang W, Liu J, Xie M, Liu Q, Li S (2023) Vascular complications of diabetes: a narrative review. Medicine (Baltimore) 102(40):e35285
Liu X, Jiang L, Zeng H, Gao L, Guo S, Chen C et al (2024) Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy. Autophagy 20(5):1072–1097
Turkieh A, El Masri Y, Pinet F, Dubois-Deruy E (2022) Mitophagy regulation following myocardial infarction. Cells. 11(2):199
Pérez-Cremades D, Chen J, Assa C, Feinberg MW (2023) MicroRNA-mediated control of myocardial infarction in diabetes. Trends Cardiovasc Med 33(4):195–201
Baum P, Toyka KV, Blüher M, Kosacka J, Nowicki M (2021) Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects. Int J Mol Sci 22(19):10835
Cheng HS, Pérez-Cremades D, Zhuang R, Jamaiyar A, Wu W, Chen J et al (2023) Impaired angiogenesis in diabetic critical limb ischemia is mediated by a miR-130b/INHBA signaling axis. JCI Insight. https://doi.org/10.1172/jci.insight.163041
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G (2022) Functional role of microRNAs in regulating cardiomyocyte death. Cells. 11(6):983
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM (2023) A review of micro RNAs changes in T2DM in animals and humans. J Diabetes 15(8):649–664
Huang K, Yu X, Yu Y, Zhang L, Cen Y, Chu J (2020) Long noncoding RNA MALAT1 promotes high glucose-induced inflammation and apoptosis of vascular endothelial cells by regulating miR-361-3p/SOCS3 axis. Int J Clin Exp Pathol 13(5):1243–1252
Advani A (2020) Acute kidney injury: a bona fide complication of diabetes. Diabetes 69(11):2229–2237
Zhou Y, Zhou C, Wei L, Han C, Cao Y (2022) The ceRNA crosstalk between mRNAs and lncRNAs in diabetes myocardial infarction. Dis Markers 2022:4283534
Maratni NPT, Saraswati MR, Ayu Dewi NN, Suastika K (2023) MIRNA146a and diabetes-related complications: a review. Curr Diabetes Rev 19(9):e141022209958
Luo Y, Liu L, Zhang C (2024) Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing. Comput Biol Med 169:107780
Meir J, Huang L, Mahmood S, Whiteson H, Cohen S, Aronow WS (2024) The vascular complications of diabetes: a review of their management, pathogenesis, and prevention. Expert Rev Endocrinol Metab 19(1):11–20
Wang N, Ding L, Liu D, Zhang Q, Zheng G, Xia X et al (2022) Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Front Endocrinol (Lausanne) 13:918605
Zhang C, Gong Y, Li N, Liu X, Zhang Y, Ye F et al (2021) Long noncoding RNA Kcnq1ot1 promotes sC5b-9-induced podocyte pyroptosis by inhibiting miR-486a-3p and upregulating NLRP3. Am J Physiol Cell Physiol 320(3):C355–C364
Guo X, Xing Y, Jin W (2023) Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 14:1183586
Zaino B, Goel R, Devaragudi S, Prakash A, Vaghamashi Y, Sethi Y et al (2023) Diabetic neuropathy: pathogenesis and evolving principles of management. Dis Mon 69(9):101582
Zhang Y, Song Z, Li X, Xu S, Zhou S, Jin X et al (2020) Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy. Am J Physiol Cell Physiol 318(2):C346–C359
Lu Y, Lu Y, Meng J, Wang Z (2021) Pyroptosis and Its regulation in diabetic cardiomyopathy. Front Physiol 12:791848
Shoeib HM, Keshk WA, Al-Ghazaly GM, Wagih AA, El-Dardiry SA (2023) Interplay between long non-coding RNA MALAT1 and pyroptosis in diabetic nephropathy patients. Gene 851:146978
Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD et al (2022) Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 13(4):358–375
Yu X, Ma X, Lin W, Xu Q, Zhou H, Kuang H (2021) Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342-3p targeting of CASP1 in diabetic retinopathy. Exp Eye Res 202:108300
Zhuang L, Jin G, Qiong W, Ge X, Pei X (2023) Circular RNA COL1A2 mediates high glucose-induced oxidative stress and pyroptosis by regulating MiR-424-5p/SGK1 in diabetic nephropathy. Appl Biochem Biotechnol 195(12):7652–7667
Hu B, Chen W, Zhong Y, Tuo Q (2023) The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Front Cardiovasc Med 10:1217985
Lee SH, Hyun D, Choi J et al (2023) Adherence to guideline-directed medical therapy and 3-year clinical outcome following acute myocardial infarction. Eur Heart J Open 3:oead029
Braga JGB, de Novais CB, Diniz PP, da Silva Aragão OO, Saggin Júnior OJ, da Conceição JE (2023) Association of mycoheterotrophic gentianaceae with specific glomus lineages. Mycorrhiza 33:249–256
Byrne J, Willis A, Dunkley A et al (2022) Individual, healthcare professional and system-level barriers and facilitators to initiation and adherence to injectable therapies for type 2 diabetes: a systematic review and meta-ethnography. Diabet Med 39:e14678
Wang B, Guo H, Liu D et al (2023) ETS1-HMGA2 axis promotes human limbal epithelial stem cell proliferation. Invest Ophthalmol Vis Sci 64:12
Tan Z, Chen X, Zuo J, Fu S, Wang H, Wang J (2023) Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. J Transl Med 21(1):223
Fang Z, Li J, Cao F, Li F (2022) Integration of scRNA-Seq and bulk RNA-Seq reveals molecular characterization of the immune microenvironment in acute pancreatitis. Biomolecules 13(1):78
Nigita G, Marceca GP, Tomasello L, Distefano R, Calore F, Veneziano D et al (2019) ncRNA editing: functional characterization and computational resources. Methods Mol Biol 1912:133–174
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 346(6213):1258096
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239
Laughery MF, Wyrick JJ (2019) Simple CRISPR-cas9 genome editing in saccharomyces cerevisiae. Curr Protoc Mol Biol 129(1):e110
Li X, Bai C, Wang H, Wan T, Li Y (2022) LncRNA MEG3 regulates autophagy and pyroptosis via FOXO1 in pancreatic β-cells. Cell Signal 92:110247
Xi X, Wang M, Chen Q, Ma J, Zhang J, Li Y (2023) DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol 577:112012
Wu Q, Huang F (2023) LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 14:1238981
Zhao N, Hua W, Liu Q, Wang Y, Liu Z, Jin S et al (2023) MALAT1 knockdown alleviates the pyroptosis of microglias in diabetic cerebral ischemia via regulating STAT1 mediated NLRP3 transcription. Mol Med 29(1):44
Chen C, Chen J, Wang Y, Fang L, Guo C, Sang T et al (2023) Ganoderma lucidum polysaccharide inhibits HSC activation and liver fibrosis via targeting inflammation, apoptosis, cell cycle, and ECM-receptor interaction mediated by TGF-β/Smad signaling. Phytomedicine 110:154626
Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V et al (2021) Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis 12(11):1068
Song J, Lv H, Liu B, Hao M, Taylor HS, Zhang X et al (2023) Let-7 suppresses liver fibrosis by inhibiting hepatocyte apoptosis and TGF-β production. Mol Metab 78:101828
Song Y, Guo F, Zhao YY, Ma XJ, Wu LN, Yu JF et al (2023) Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Prolif 56(2):e13349
Tang Q, Markby GR, MacNair AJ, Tang K, Tkacz M, Parys M et al (2023) TGF-β-induced PI3K/AKT/mTOR pathway controls myofibroblast differentiation and secretory phenotype of valvular interstitial cells through the modulation of cellular senescence in a naturally occurring in vitro canine model of myxomatous mitral valve disease. Cell Prolif 56(6):e13435
Chien LH, Deng JS, Jiang WP, Chou YN, Lin JG, Huang GJ (2023) Evaluation of lung protection of Sanghuangporus sanghuang through TLR4/NF-κB/MAPK, keap1/Nrf2/HO-1, CaMKK/AMPK/Sirt1, and TGF-β/SMAD3 signaling pathways mediating apoptosis and autophagy. Biomed Pharmacother 165:115080
Ge Q, Shi Z, Zou KA, Ying J, Chen J, Yuan W et al (2023) Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight 8(3):e166688
Acknowledgements
The figures were created with BioRender software (https://www.biorender.com/).
Funding
This review was supported by the National Natural Science Foundation of China [grant number 82160371 to J.Z., 82100869 and 82360162 to P.Y.]; the Natural Science Foundation in Jiangxi Province [grant numbers 20224ACB216009 to J.Z.]; the Jiangxi Province Thousands of Plans [grant number jxsq2023201105 to P.Y.]; Young Elite Scientists Sponsorship Program by JXAST [grant number 2023OT05 to J.Z.], the Hengrui Diabetes Metabolism Research Fund [grant number Z-2017–26-2202–4 to P.Y.], and National College Students Innovation and Entrepreneurship Training Program [grant number 202410403014 to G.H.].
Author information
Authors and Affiliations
Contributions
All authors have discussed the proposed scope and content of the article before drafting. G.Y.H., K.H.B., and T.F.L. wrote and revised the whole paper. W.T.W., L.O.Y., X.L., and D.J.Z drew and revised the figures. Y.T.W., J.Q.L., J.T.L and Y.X.C. collected literatures. P.Y., J.Z., and R.X. reviewed and edited the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Han, G., Hu, K., Luo, T. et al. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications. Apoptosis (2025). https://doi.org/10.1007/s10495-024-02066-w
Accepted:
Published:
DOI: https://doi.org/10.1007/s10495-024-02066-w