Skip to main content

Advertisement

Log in

Can’t live without them, can live with them: roles of caspases during vital cellular processes

  • Apoptosis in Drosophila
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698. doi:10.1146/annurev.cb.07.110191.003311

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354. doi:10.1016/S0092-8674(00)81873-5

    Article  PubMed  CAS  Google Scholar 

  3. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254. doi:10.1016/S0092-8674(00)80564-4

    Article  PubMed  CAS  Google Scholar 

  4. Tittel JN, Steller H (2000) A comparison of programmed cell death between species. Genome Biol 1: REVIEWS0003

  5. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801. doi:10.1038/35037734

    Article  PubMed  CAS  Google Scholar 

  6. Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787. doi:10.1038/nrm931

    Article  PubMed  CAS  Google Scholar 

  7. Bialik S, Kimchi A (2004) DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol 14:283–294. doi:10.1016/j.semcancer.2004.04.008

    Article  PubMed  CAS  Google Scholar 

  8. White E (2006) Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis. Cell Death Differ 13:1371–1377. doi:10.1038/sj.cdd.4401941

    Article  PubMed  CAS  Google Scholar 

  9. Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11:1214–1224. doi:10.1111/j.1582-4934.2007.00150.x

    Article  PubMed  Google Scholar 

  10. Bredesen DE (2008) Programmed cell death mechanisms in neurological disease. Curr Mol Med 8:173–186. doi:10.2174/156652408784221315

    Article  PubMed  CAS  Google Scholar 

  11. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  12. Song Z, Steller H (1999) Death by design: mechanism and control of apoptosis. Trends Cell Biol 9:M49–M52. doi:10.1016/S0962-8924(99)01670-0

    Article  PubMed  CAS  Google Scholar 

  13. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. doi:10.1038/35037710

    Article  PubMed  CAS  Google Scholar 

  14. Hacker G (2000) The morphology of apoptosis. Cell Tissue Res 301:5–17. doi:10.1007/s004410000193

    Article  PubMed  CAS  Google Scholar 

  15. Kornbluth S, White K (2005) Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 118:1779–1787. doi:10.1242/jcs.02377

    Article  PubMed  CAS  Google Scholar 

  16. Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622. doi:10.1016/j.coi.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  17. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases—an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27. doi:10.1016/j.cbpb.2008.05.010

    Article  PubMed  CAS  Google Scholar 

  18. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652. doi:10.1016/0092-8674(93)90485-9

    Article  PubMed  CAS  Google Scholar 

  19. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306. doi:10.1016/S0968-0004(97)01085-2

    Article  PubMed  CAS  Google Scholar 

  20. Bergmann A, Agapite J, Steller H (1998) Mechanisms and control of programmed cell death in invertebrates. Oncogene 17:3215–3223. doi:10.1038/sj.onc.1202586

    Article  PubMed  Google Scholar 

  21. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290. doi:10.1146/annurev.cellbio.15.1.269

    Article  PubMed  CAS  Google Scholar 

  22. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274:20049–20052. doi:10.1074/jbc.274.29.20049

    Article  PubMed  CAS  Google Scholar 

  23. Lamkanfi M, Festjens N, Declercq W, Vanden BT, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14:44–55. doi:10.1038/sj.cdd.4402047

    Article  PubMed  CAS  Google Scholar 

  24. Salvesen GS, Riedl SJ (2008) Caspase mechanisms. Adv Exp Med Biol 615:13–23. doi:10.1007/978-1-4020-6554-5_2

    Article  PubMed  Google Scholar 

  25. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413. doi:10.1016/S0092-8674(00)80501-2

    Article  PubMed  CAS  Google Scholar 

  26. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308. doi:10.1126/science.281.5381.1305

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184. doi:10.1101/gad.13.24.3179

    Article  PubMed  CAS  Google Scholar 

  28. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731. doi:10.1016/j.ceb.2003.10.009

    Article  PubMed  CAS  Google Scholar 

  29. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907. doi:10.1038/nrm1496

    Article  PubMed  CAS  Google Scholar 

  30. Thierry F, Demeret C (2008) Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins. Cell Death Differ 15:1356–1363. doi:10.1038/cdd.2008.53

    Article  PubMed  CAS  Google Scholar 

  31. Kerr JFR, Harmon BV (1991) Apoptosis: Molecular basis of Cell Death. In: Definition and incidence of apoptosis: An historical perspective. Cold Spring Harbor Laboratory Press, New York, pp 5–29

    Google Scholar 

  32. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99. doi:10.1038/34214

    Article  PubMed  CAS  Google Scholar 

  33. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316. doi:10.1126/science.281.5381.1312

    Article  PubMed  CAS  Google Scholar 

  34. Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14:66–72. doi:10.1038/sj.cdd.4402059

    Article  PubMed  CAS  Google Scholar 

  35. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501. doi:10.1083/jcb.119.3.493

    Article  PubMed  CAS  Google Scholar 

  36. Arama E, Steller H (2006) Detection of apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and acridine orange in Drosophila embryos and adult male gonads. Nat Protocols 1:1725–1731. doi:10.1038/nprot.2006.235

    Article  CAS  Google Scholar 

  37. Vaculova A, Zhivotovsky B (2008) Caspases: determination of their activities in apoptotic cells. Methods Enzymol 442:157–181. doi:10.1016/S0076-6879(08)01408-0

    Article  PubMed  CAS  Google Scholar 

  38. Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, Tomaselli KJ (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 5:1004–1016. doi:10.1038/sj.cdd.4400449

    Article  PubMed  CAS  Google Scholar 

  39. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67:2168–2174

    PubMed  CAS  Google Scholar 

  40. Goyal L (2001) Cell death inhibition: keeping caspases in check. Cell 104:805–808. doi:10.1016/S0092-8674(01)00276-8

    Article  PubMed  CAS  Google Scholar 

  41. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297. doi:10.1038/nrm1621

    Article  PubMed  CAS  Google Scholar 

  42. O′Riordan MX, Bauler LD, Scott FL, Duckett CS (2008) Inhibitor of apoptosis proteins in eukaryotic evolution and development: a model of thematic conservation. Dev Cell 15:497–508. doi:10.1016/j.devcel.2008.09.012

    Article  PubMed  CAS  Google Scholar 

  43. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15:1132–1138

    Article  PubMed  CAS  Google Scholar 

  44. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98:453–463. doi:10.1016/S0092-8674(00)81974-1

    Article  PubMed  CAS  Google Scholar 

  45. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19:589–597. doi:10.1093/emboj/19.4.589

    Article  PubMed  CAS  Google Scholar 

  46. Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154:669–678

    PubMed  CAS  Google Scholar 

  47. Wilson R, Goyal L, Ditzel M, Zachariou A, Baker DA, Agapite J, Steller H, Meier P (2002) The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat Cell Biol 4:445–450. doi:10.1038/ncb799

    Article  PubMed  CAS  Google Scholar 

  48. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7:491–501. doi:10.1016/j.devcel.2004.08.019

    Article  PubMed  CAS  Google Scholar 

  49. Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P (2008) Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32:540–553. doi:10.1016/j.molcel.2008.09.025

    Article  PubMed  CAS  Google Scholar 

  50. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683. doi:10.1126/science.8171319

    Article  PubMed  CAS  Google Scholar 

  51. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4:432–438. doi:10.1038/ncb795

    Article  PubMed  CAS  Google Scholar 

  52. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877. doi:10.1126/science.288.5467.874

    Article  PubMed  CAS  Google Scholar 

  53. Schile AJ, Garcia-Fernandez M, Steller H (2008) Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22:2256–2266. doi:10.1101/gad.1663108

    Article  PubMed  CAS  Google Scholar 

  54. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14:184–193. doi:10.1016/j.tcb.2004.03.002

    Article  PubMed  CAS  Google Scholar 

  55. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C (2005) Vital functions for lethal caspases. Oncogene 24:5137–5148. doi:10.1038/sj.onc.1208524

    Article  PubMed  CAS  Google Scholar 

  56. Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17:135–144. doi:10.1016/j.tcb.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  57. Maelfait J, Beyaert R (2008) Non-apoptotic functions of caspase-8. Biochem Pharmacol 76:1365–1373. doi:10.1016/j.bcp.2008.07.034

    Article  PubMed  CAS  Google Scholar 

  58. Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123. doi:10.1038/cdd.2008.28

    Article  PubMed  CAS  Google Scholar 

  59. Yi CH, Yuan J (2009) The jekyll and hyde functions of caspases. Dev Cell 16:21–34. doi:10.1016/j.devcel.2008.12.012

    Article  PubMed  CAS  Google Scholar 

  60. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241. doi:10.1038/nrm2312

    Article  PubMed  CAS  Google Scholar 

  61. Rabl C (1899) Uber den Bau und die Entwicklung der Linse. III. Die Linse der Saugetiere:Ruckblick und Schluss. Z Wiss Zool 67:1–138

    Google Scholar 

  62. Regaud C (1901) Etudes sur la structure des tubes se’minife’res et sur la spermatoge’nese chez les mammiferes. Arch Anat Microsc Morphol Exp 4:101–155

    Google Scholar 

  63. Bessis M (1973) Living blood cells and their ultrastructure. Springer, New York 140 pp

    Google Scholar 

  64. Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–6. doi:10.1006/exer.2001.1111

    Article  PubMed  CAS  Google Scholar 

  65. Bassnett S (2008) On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res 88:133–139

    Article  PubMed  CAS  Google Scholar 

  66. Appleby DW, Modak SP (1977) DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc Natl Acad Sci USA 74:5579–5583. doi:10.1073/pnas.74.12.5579

    Article  PubMed  CAS  Google Scholar 

  67. Bassnett S, Mataic D (1997) Chromatin degradation in differentiating fiber cells of the eye lens. J Cell Biol 137:37–49. doi:10.1083/jcb.137.1.37

    Article  PubMed  CAS  Google Scholar 

  68. Dahm R, Gribbon C, Quinlan RA, Prescott AR (1998) Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur J Cell Biol 75:237–246

    PubMed  CAS  Google Scholar 

  69. Ishizaki Y, Jacobson MD, Raff MC (1998) A role for caspases in lens fiber differentiation. J Cell Biol 140:153–158. doi:10.1083/jcb.140.1.153

    Article  PubMed  CAS  Google Scholar 

  70. Bassnett S, Beebe DC (1992) Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev Dyn 194:85–93

    PubMed  CAS  Google Scholar 

  71. Bassnett S (1992) Mitochondrial dynamics in differentiating fiber cells of the mammalian lens. Curr Eye Res 11:1227–1232. doi:10.3109/02713689208999548

    Article  PubMed  CAS  Google Scholar 

  72. Bassnett S (1995) The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest Ophthalmol Vis Sci 36:1793–1803

    PubMed  CAS  Google Scholar 

  73. Lee A, Morrow JS, Fowler VM (2001) Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem 276:20735–20742. doi:10.1074/jbc.M009723200

    Article  PubMed  CAS  Google Scholar 

  74. Wride MA, Parker E, Sanders EJ (1999) Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev Biol 213:142–156. doi:10.1006/dbio.1999.9375

    Article  PubMed  CAS  Google Scholar 

  75. Fromm L, Overbeek PA (1997) Inhibition of cell death by lens-specific overexpression of bcl-2 in transgenic mice. Dev Genet 20:276–287. doi:10.1002/(SICI)1520-6408(1997)20:3<276::AID-DVG10>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  76. Sanders EJ, Parker E (2003) Retroviral overexpression of bcl-2 in the embryonic chick lens influences denucleation in differentiating lens fiber cells. Differentiation 71:425–433. doi:10.1046/j.1432-0436.2003.7107005.x

    Article  PubMed  CAS  Google Scholar 

  77. Cossarizza A, Kalashnikova G, Grassilli E, Chiappelli F, Salvioli S, Capri M, Barbieri D, Troiano L, Monti D, Franceschi C (1994) Mitochondrial modifications during rat thymocyte apoptosis: a study at the single cell level. Exp Cell Res 214:323–330. doi:10.1006/excr.1994.1264

    Article  PubMed  CAS  Google Scholar 

  78. Watt JA, Pike CJ, Walencewicz-Wasserman AJ, Cotman CW (1994) Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Res 661:147–156. doi:10.1016/0006-8993(94)91191-6

    Article  PubMed  CAS  Google Scholar 

  79. Weis M, Schlegel J, Kass GE, Holmstrom TH, Peters I, Eriksson J, Orrenius S, Chow SC (1995) Cellular events in Fas/APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 219:699–708. doi:10.1006/excr.1995.1281

    Article  PubMed  CAS  Google Scholar 

  80. Lecoeur H, Chauvier D, Langonne A, Rebouillat D, Brugg B, Mariani J, Edelman L, Jacotot E (2004) Dynamic analysis of apoptosis in primary cortical neurons by fixed- and real-time cytofluorometry. Apoptosis 9:157–169. doi:10.1023/B:APPT.0000018798.03705.69

    Article  PubMed  CAS  Google Scholar 

  81. Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R (1990) Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 11:847–853. doi:10.1093/carcin/11.5.847

    Article  PubMed  CAS  Google Scholar 

  82. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492. doi:10.1073/pnas.140216197

    Article  PubMed  CAS  Google Scholar 

  83. Zandy AJ, Lakhani S, Zheng T, Flavell RA, Bassnett S (2005) Role of the executioner caspases during lens development. J Biol Chem 280:30263–30272. doi:10.1074/jbc.M504007200

    Article  PubMed  CAS  Google Scholar 

  84. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26. doi:10.1016/S0166-2236(99)01479-4

    Article  PubMed  Google Scholar 

  85. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613. doi:10.1074/jbc.273.49.32608

    Article  PubMed  CAS  Google Scholar 

  86. Hillman RS, Finch CA (1971) Erythropoiesis. N Engl J Med 285:99–101

    Article  PubMed  CAS  Google Scholar 

  87. Morioka K, Tone S, Mukaida M, Takano-Ohmuro H (1998) The apoptotic and nonapoptotic nature of the terminal differentiation of erythroid cells. Exp Cell Res 240:206–217. doi:10.1006/excr.1997.3927

    Article  PubMed  CAS  Google Scholar 

  88. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254. doi:10.1084/jem.193.2.247

    Article  PubMed  CAS  Google Scholar 

  89. Kolbus A, Pilat S, Husak Z, Deiner EM, Stengl G, Beug H, Baccarini M (2002) Raf-1 antagonizes erythroid differentiation by restraining caspase activation. J Exp Med 196:1347–1353. doi:10.1084/jem.20020562

    Article  PubMed  CAS  Google Scholar 

  90. Carlile GW, Smith DH, Wiedmann M (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316. doi:10.1182/blood-2003-09-3362

    Article  PubMed  CAS  Google Scholar 

  91. Droin N, Cathelin S, Jacquel A, Guery L, Garrido C, Fontenay M, Hermine O, Solary E (2008) A role for caspases in the differentiation of erythroid cells and macrophages. Biochimie 90:416–422. doi:10.1016/j.biochi.2007.08.007

    Article  PubMed  CAS  Google Scholar 

  92. Lindsley D, Tokuyasu KT (1980) Spermatogenesis. In: Ashburner M, Wright TR (eds) Genetics and biology of Drosophila. Academic Press, New York, pp 225–294

    Google Scholar 

  93. Fuller MT (1993) Spermatogenesis in Drosophila. In: Bate M, Arias AM (eds) The Development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Woodbury, pp 71–147

    Google Scholar 

  94. Tokuyasu KT, Peacock WJ, Hardy RW (1972) Dynamics of spermiogenesis in Drosophila melanogaster. I. Individualization process. Z Zellforsch Mikrosk Anat 124:479–506. doi:10.1007/BF00335253

    Article  PubMed  CAS  Google Scholar 

  95. Fabrizio JJ, Hime G, Lemmon SK, Bazinet C (1998) Genetic dissection of sperm individualization in Drosophila melanogaster. Development 125:1833–1843

    PubMed  CAS  Google Scholar 

  96. Wilson EB (1953) The cell in development and heredity. MacMillan, New York

    Google Scholar 

  97. Phillips DM (1970) Insect sperm: their structure and morphogenesis. J Cell Biol 44:243–277. doi:10.1083/jcb.44.2.243

    Article  PubMed  CAS  Google Scholar 

  98. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4:687–697. doi:10.1016/S1534-5807(03)00120-5

    Article  PubMed  CAS  Google Scholar 

  99. Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    PubMed  CAS  Google Scholar 

  100. Arama E, Bader M, Srivastava M, Bergmann A, Steller H (2006) The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 25:232–243. doi:10.1038/sj.emboj.7600920

    Article  PubMed  CAS  Google Scholar 

  101. Huh JR, Vernooy SY, Yu H, Yan N, Shi Y, Guo M, Hay BA (2004) Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2:E15. doi:10.1371/journal.pbio.0020015

    Article  PubMed  CAS  Google Scholar 

  102. Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ, Guo M, Baehrecke EH, Hay BA (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133:3305–3315

    Article  PubMed  CAS  Google Scholar 

  103. Arama E, Bader M, Rieckhof GE, Steller H (2007) A ubiquitin ligase complex regulates caspase activation during sperm differentiation in drosophila. PLoS Biol 5:e251. doi:10.1371/journal.pbio.0050251

    Article  PubMed  CAS  Google Scholar 

  104. Dietert SE (1966) Fine structure of the formation and fate of the residual bodies of mouse spermatozoa with evidence for the participation of lysosomes. J Morphol 120:317–346. doi:10.1002/jmor.1051200402

    Article  Google Scholar 

  105. Breucker H, Schafer E, Holstein AF (1985) Morphogenesis and fate of the residual body in human spermiogenesis. Cell Tissue Res 240:303–309. doi:10.1007/BF00222339

    Article  PubMed  CAS  Google Scholar 

  106. Blanco-Rodriguez J, Martinez-Garcia C (1999) Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod 61:1541–1547. doi:10.1095/biolreprod61.6.1541

    Article  PubMed  CAS  Google Scholar 

  107. Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136. doi:10.1016/0167-5699(93)90215-7

    Article  PubMed  CAS  Google Scholar 

  108. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H (2005) The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8:353–364. doi:10.1016/j.devcel.2005.01.021

    Article  PubMed  CAS  Google Scholar 

  109. Wang S, Zheng H, Esaki Y, Kelly F, Yan W (2006) Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis. Biol Reprod 74:102–108. doi:10.1095/biolreprod.105.045484

    Article  PubMed  CAS  Google Scholar 

  110. Yan W, Ma L, Burns KH, Matzuk MM (2004) Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc Natl Acad Sci USA 101:7793–7798. doi:10.1073/pnas.0308025101

    Article  PubMed  CAS  Google Scholar 

  111. Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, Lamb DJ, Matzuk MM (2006) Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet 15:3411–3419. doi:10.1093/hmg/ddl417

    Article  PubMed  CAS  Google Scholar 

  112. Luo L, O′Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156. doi:10.1146/annurev.neuro.28.061604.135632

    Article  PubMed  CAS  Google Scholar 

  113. Grueber WB, Jan YN (2004) Dendritic development: lessons from Drosophila and related branches. Curr Opin Neurobiol 14:74–82. doi:10.1016/j.conb.2004.01.001

    Article  PubMed  CAS  Google Scholar 

  114. Williams DW, Truman JW (2005) Remodeling dendrites during insect metamorphosis. J Neurobiol 64:24–33. doi:10.1002/neu.20151

    Article  PubMed  CAS  Google Scholar 

  115. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14:678–684. doi:10.1016/j.cub.2004.03.035

    Article  PubMed  CAS  Google Scholar 

  116. Awasaki T, Ito K (2004) Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr Biol 14:668–677. doi:10.1016/j.cub.2004.04.001

    Article  PubMed  CAS  Google Scholar 

  117. Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y, Ueda R, Ito K (2006) Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:855–867. doi:10.1016/j.neuron.2006.04.027

    Article  PubMed  CAS  Google Scholar 

  118. MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–881. doi:10.1016/j.neuron.2006.04.028

    Article  PubMed  CAS  Google Scholar 

  119. Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132:3631–3642. doi:10.1242/dev.01928

    Article  PubMed  CAS  Google Scholar 

  120. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9:1234–1236. doi:10.1038/nn1774

    Article  PubMed  CAS  Google Scholar 

  121. Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38:871–885. doi:10.1016/S0896-6273(03)00295-2

    Article  PubMed  CAS  Google Scholar 

  122. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN (2006) Identification of e2/e3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51:283–290. doi:10.1016/j.neuron.2006.07.014

    Article  PubMed  CAS  Google Scholar 

  123. Kuo CT, Jan LY, Jan YN (2005) Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci USA 102:15230–15235. doi:10.1073/pnas.0507393102

    Article  PubMed  CAS  Google Scholar 

  124. Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC (2000) Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci 20:1333–1341

    PubMed  CAS  Google Scholar 

  125. Tavassoli M, Aoki M (1989) Localization of megakaryocytes in the bone marrow. Blood Cells 15:3–14

    PubMed  CAS  Google Scholar 

  126. Gewirtz AM (1995) Megakaryocytopoiesis: the state of the art. Thromb Haemost 74:204–209

    PubMed  CAS  Google Scholar 

  127. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM (1999) Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 96:14943–14948. doi:10.1073/pnas.96.26.14943

    Article  PubMed  CAS  Google Scholar 

  128. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–1738. doi:10.1126/science.286.5445.1735

    Article  PubMed  CAS  Google Scholar 

  129. Battinelli E, Willoughby SR, Foxall T, Valeri CR, Loscalzo J (2001) Induction of platelet formation from megakaryocytoid cells by nitric oxide. Proc Natl Acad Sci USA 98:14458–14463. doi:10.1073/pnas.241427398

    Article  PubMed  CAS  Google Scholar 

  130. Clarke MC, Savill J, Jones DB, Noble BS, Brown SB (2003) Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol 160:577–587. doi:10.1083/jcb.200210111

    Article  PubMed  CAS  Google Scholar 

  131. Radley JM, Haller CJ (1983) Fate of senescent megakaryocytes in the bone marrow. Br J Haematol 53:277–287. doi:10.1111/j.1365-2141.1983.tb02022.x

    Article  PubMed  CAS  Google Scholar 

  132. Zauli G, Vitale M, Falcieri E, Gibellini D, Bassini A, Celeghini C, Columbaro M, Capitani S (1997) In vitro senescence and apoptotic cell death of human megakaryocytes. Blood 90:2234–2243

    PubMed  CAS  Google Scholar 

  133. De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317. doi:10.1182/blood-2002-03-0686

    Article  PubMed  CAS  Google Scholar 

  134. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1:272–279. doi:10.1038/12984

    Article  PubMed  CAS  Google Scholar 

  135. Kanuka H, Sawamoto K, Inohara N, Matsuno K, Okano H, Miura M (1999) Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol Cell 4:757–769. doi:10.1016/S1097-2765(00)80386-X

    Article  PubMed  CAS  Google Scholar 

  136. Chew SK, Akdemir F, Chen P, Lu WJ, Mills K, Daish T, Kumar S, Rodriguez A, Abrams JM (2004) The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 7:897–907. doi:10.1016/j.devcel.2004.09.016

    Article  PubMed  CAS  Google Scholar 

  137. Mendes CS, Arama E, Brown S, Scherr H, Srivastava M, Bergmann A, Steller H, Mollereau B (2006) Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 7:933–939. doi:10.1038/sj.embor.7400773

    Article  PubMed  CAS  Google Scholar 

  138. Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M (2005) Drosophila caspase transduces shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 24:3793–3806

    Article  PubMed  CAS  Google Scholar 

  139. Simpson P, Woehl R, Usui K (1999) The development and evolution of bristle patterns in Diptera. Development 126:1349–1364

    PubMed  CAS  Google Scholar 

  140. Kuranaga E, Kanuka H, Tonoki A, Takemoto K, Tomioka T, Kobayashi M, Hayashi S, Miura M (2006) Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. Cell 126:583–596. doi:10.1016/j.cell.2006.05.048

    Article  PubMed  CAS  Google Scholar 

  141. Oshima K, Takeda M, Kuranaga E, Ueda R, Aigaki T, Miura M, Hayashi S (2006) IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis. Curr Biol 16:1531–1537

    Article  PubMed  CAS  Google Scholar 

  142. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465. doi:10.1016/S0092-8674(03)00120-X

    Article  PubMed  CAS  Google Scholar 

  143. Viola A, Gupta N (2007) Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 7:889–896. doi:10.1038/nri2193

    Article  PubMed  CAS  Google Scholar 

  144. Carlier MF, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282:23005–23009. doi:10.1074/jbc.R700020200

    Article  PubMed  CAS  Google Scholar 

  145. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589. doi:10.1038/nrm1682

    Article  PubMed  CAS  Google Scholar 

  146. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298. doi:10.1126/science.278.5336.294

    Article  PubMed  CAS  Google Scholar 

  147. He B, Adler PN (2001) Cellular mechanisms in the development of the Drosophila arista. Mech Dev 104:69–78. doi:10.1016/S0925-4773(01)00368-9

    Article  PubMed  CAS  Google Scholar 

  148. Cullen K, McCall K (2004) Role of programmed cell death in patterning the Drosophila antennal arista. Dev Biol 275:82–92. doi:10.1016/j.ydbio.2004.07.028

    Article  PubMed  CAS  Google Scholar 

  149. Geisbrecht ER, Montell DJ (2004) A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118:111–125. doi:10.1016/j.cell.2004.06.020

    Article  PubMed  CAS  Google Scholar 

  150. Zhang B, Zhang Y, Shacter E (2003) Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol Cell Biol 23:5716–5725. doi:10.1128/MCB.23.16.5716-5725.2003

    Article  PubMed  CAS  Google Scholar 

  151. Rohn TT, Cusack SM, Kessinger SR, Oxford JT (2004) Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 295:215–225. doi:10.1016/j.yexcr.2003.12.029

    Article  PubMed  CAS  Google Scholar 

  152. Pandey P, Nakazawa A, Ito Y, Datta R, Kharbanda S, Kufe D (2000) Requirement for caspase activation in monocytic differentiation of myeloid leukemia cells. Oncogene 19:3941–3947. doi:10.1038/sj.onc.1203751

    Article  PubMed  CAS  Google Scholar 

  153. Xu G, Shi Y (2007) Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res 17:759–771. doi:10.1038/cr.2007.52

    Article  PubMed  CAS  Google Scholar 

  154. Secchiero P, Gonelli A, Mirandola P, Melloni E, Zamai L, Celeghini C, Milani D, Zauli G (2002) Tumor necrosis factor-related apoptosis-inducing ligand induces monocytic maturation of leukemic and normal myeloid precursors through a caspase-dependent pathway. Blood 100:2421–2429. doi:10.1182/blood-2002-01-0047

    Article  PubMed  CAS  Google Scholar 

  155. Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100:4446–4453. doi:10.1182/blood-2002-06-1778

    Article  PubMed  CAS  Google Scholar 

  156. Netea MG, Lewis EC, Azam T, Joosten LA, Jaekal J, Bae SY, Dinarello CA, Kim SH (2008) Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci USA 105:3515–3520. doi:10.1073/pnas.0712381105

    Article  PubMed  CAS  Google Scholar 

  157. Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984

    PubMed  CAS  Google Scholar 

  158. Cathelin S, Rebe C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S, Mayeux P, Solary E (2006) Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation. J Biol Chem 281:17779–17788. doi:10.1074/jbc.M600537200

    Article  PubMed  CAS  Google Scholar 

  159. Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM (1995) Regulation of human leukocyte p21-activated kinases through G protein–coupled receptors. Science 269:221–223. doi:10.1126/science.7618083

    Article  PubMed  CAS  Google Scholar 

  160. Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574. doi:10.1126/science.276.5318.1571

    Article  PubMed  CAS  Google Scholar 

  161. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168. doi:10.1016/S0092-8674(00)81692-X

    Article  PubMed  CAS  Google Scholar 

  162. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372. doi:10.1038/384368a0

    Article  PubMed  CAS  Google Scholar 

  163. Woo M, Hakem R, Soengas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819. doi:10.1101/gad.12.6.806

    Article  PubMed  CAS  Google Scholar 

  164. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713

    PubMed  CAS  Google Scholar 

  165. Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    PubMed  CAS  Google Scholar 

  166. Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo CC, Reynolds G, Milne CD, Paige CJ, Karlsson S, Woo M, Scadden DT (2008) Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2:584–594. doi:10.1016/j.stem.2008.03.012

    Article  PubMed  CAS  Google Scholar 

  167. Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, Thomson JA, Zwaka TP (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601. doi:10.1016/j.stem.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  168. Yamane T, Dylla SJ, Muijtjens M, Weissman IL (2005) Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. Proc Natl Acad Sci USA 102:3312–3317. doi:10.1073/pnas.0500167102

    Article  PubMed  CAS  Google Scholar 

  169. Huesmann GR, Clayton DF (2006) Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52:1061–1072. doi:10.1016/j.neuron.2006.10.033

    Article  PubMed  CAS  Google Scholar 

  170. Lu C, Fu W, Salvesen GS, Mattson MP (2002) Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. Neuromolecular Med 1:69–79. doi:10.1385/NMM:1:1:69

    Article  PubMed  CAS  Google Scholar 

  171. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164. doi:10.1016/S0092-8674(02)00625-6

    Article  PubMed  CAS  Google Scholar 

  172. Wu H, Tschopp J, Lin SC (2007) Smac mimetics and TNFalpha: a dangerous liaison? Cell 131:655–658. doi:10.1016/j.cell.2007.10.042

    Article  PubMed  CAS  Google Scholar 

  173. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–6275. doi:10.1038/onc.2008.302

    Article  PubMed  CAS  Google Scholar 

  174. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA 105:12815–12819. doi:10.1073/pnas.0707715105

    Article  PubMed  CAS  Google Scholar 

  175. Gibson S, Widmann C, Johnson GL (1999) Differential involvement of MEK kinase 1 (MEKK1) in the induction of apoptosis in response to microtubule-targeted drugs versus DNA damaging agents. J Biol Chem 274:10916–10922. doi:10.1074/jbc.274.16.10916

    Article  PubMed  CAS  Google Scholar 

  176. Yang JY, Michod D, Walicki J, Murphy BM, Kasibhatla S, Martin SJ, Widmann C (2004) Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions. Mol Cell Biol 24:10425–10436. doi:10.1128/MCB.24.23.10425-10436.2004

    Article  PubMed  CAS  Google Scholar 

  177. Koenig A, Russell JQ, Rodgers WA, Budd RC (2008) Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death. Cell Death Differ 15:1701–1711. doi:10.1038/cdd.2008.100

    Article  PubMed  CAS  Google Scholar 

  178. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, Dale JK, Puck J, Davis J, Hall CG, Skoda-Smith S, Atkinson TP, Straus SE, Lenardo MJ (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399. doi:10.1038/nature01063

    Article  PubMed  CAS  Google Scholar 

  179. Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY, Berry DM, Tamblyn L, Shehabeldin A, Migon E, Wakeham A, Bouchard D, Yeh WC, McGlade JC, Ohashi PS, Hakem R (2003) Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17:883–895. doi:10.1101/gad.1063703

    Article  PubMed  CAS  Google Scholar 

  180. Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–5598. doi:10.1242/dev.01432

    Article  PubMed  CAS  Google Scholar 

  181. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14:1262–1266. doi:10.1016/j.cub.2004.06.015

    Article  PubMed  CAS  Google Scholar 

  182. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615. doi:10.1016/j.cub.2006.07.046

    Article  PubMed  CAS  Google Scholar 

  183. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26:7258–7268. doi:10.1128/MCB.00183-06

    Article  PubMed  CAS  Google Scholar 

  184. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14:399–410. doi:10.1016/j.devcel.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  185. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321. doi:10.1126/science.282.5392.1318

    Article  PubMed  CAS  Google Scholar 

  186. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654. doi:10.1038/ncb1005

    Article  PubMed  CAS  Google Scholar 

  187. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S (2005) Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123:89–103. doi:10.1016/j.cell.2005.07.032

    Article  PubMed  CAS  Google Scholar 

  188. Allan LA, Clarke PR (2007) Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26:301–310. doi:10.1016/j.molcel.2007.03.019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ann H. Tang, Orly Reiner, Liat Ravid-Lustig, and Oren Schuldiner for critically reading the manuscript, and Ben-Zion Shilo for useful comments. We also would like to thank Steven Bassnett, Yasuki Ishizaki, Andreas Koenig, Martin Raff, and Darren Williams for the prompt permission to use their figures. Research in my laboratory is supported in part by the Morasha program of the Israel Science Foundation, Minerva foundation with funding from the Federal German Ministry for Education and Research, Israel Cancer Research Fund, German-Israeli Foundation for Scientific Research and Development, and the Moross Institute for Cancer Research. E.A. is an Alon Fellow with the Council for Higher Education of the Israeli Academy of Sciences and is also supported by grants from Lord Mitchell, The Henry S. & Anne S. Reich Research Fund for Mental Health, The Samuel M. Soref & Helene K. Soref Foundation, and The Chais Family Fellows Program for New Scientists. E.A. is the Incumbent of the Corinne S. Koshland Career Development Chair. Y.F-R. receives funding from the Israeli Ministry of Absorption in Science. We apologize to those whose work we did not cite because of either oversight on our part or space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Arama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinstein-Rotkopf, Y., Arama, E. Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14, 980–995 (2009). https://doi.org/10.1007/s10495-009-0346-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0346-6

Keywords

Navigation