Skip to main content
Log in

Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system

  • Brief Communication
  • Published:
Angiogenesis Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2016

Abstract

The lymphatic system is essential in many physiological and pathological processes. Still, much remains to be known about the molecular mechanisms that control its development and function and how to modulate them therapeutically. The study of these mechanisms will benefit from better controlled genetic mouse models targeting specifically lymphatic endothelial cells. Among the genes expressed predominantly in lymphatic endothelium, Vegfr3 was the first one identified and is still considered to be one of the best lymphatic markers and a key regulator of the lymphatic system. Here, we report the generation of a Vegfr3-CreER T2 knockin mouse by gene targeting in embryonic stem cells. This mouse expresses the tamoxifen-inducible CreERT2 recombinase under the endogenous transcriptional control of the Vegfr3 gene without altering its physiological expression or regulation. The Vegfr3-CreER T2 allele drives efficient recombination of floxed sequences upon tamoxifen administration specifically in Vegfr3-expressing cells, both in vitro, in primary lymphatic endothelial cells, and in vivo, at different stages of mouse embryonic development and postnatal life. Thus, our Vegfr3-CreER T2 mouse constitutes a new powerful genetic tool for lineage tracing analysis and for conditional gene manipulation in the lymphatic endothelium that will contribute to improve our current understanding of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. doi:10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Corral I, Makinen T (2013) Regulation of lymphatic vascular morphogenesis: implications for pathological (tumor) lymphangiogenesis. Exp Cell Res. doi:10.1016/j.yexcr.2013.01.016

    PubMed  Google Scholar 

  3. Secker GA, Harvey NL (2015) VEGFR signaling during lymphatic vascular development: from progenitor cells to functional vessels. Dev Dyn 244(3):323–331. doi:10.1002/dvdy.24227

    Article  CAS  PubMed  Google Scholar 

  4. Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422. doi:10.1002/dvdy.20982

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.1038/nature09002

    Article  CAS  PubMed  Google Scholar 

  6. Claxton S, Kostourou V, Jadeja S, Chambon P, Hodivala-Dilke K, Fruttiger M (2008) Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46(2):74–80. doi:10.1002/dvg.20367

    Article  CAS  PubMed  Google Scholar 

  7. Zarkada G, Heinolainen K, Makinen T, Kubota Y, Alitalo K (2015) VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc Natl Acad Sci USA 112(3):761–766. doi:10.1073/pnas.1423278112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778

    Article  CAS  PubMed  Google Scholar 

  10. Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207(1):17–27. doi:10.1084/jem.20091619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Onder L, Scandella E, Chai Q, Firner S, Mayer CT, Sparwasser T, Thiel V, Rulicke T, Ludewig B (2011) A novel bacterial artificial chromosome-transgenic podoplanin-cre mouse targets lymphoid organ stromal cells in vivo. Front Immunol 2:50. doi:10.3389/fimmu.2011.00050

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27(37):9817–9823. doi:10.1523/JNEUROSCI.2707-07.2007

    Article  CAS  PubMed  Google Scholar 

  13. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21(19):2422–2432. doi:10.1101/gad.1588407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186. doi:10.1016/j.devcel.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galland F, Karamysheva A, Mattei MG, Rosnet O, Marchetto S, Birnbaum D (1992) Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13(2):475–478

    Article  CAS  PubMed  Google Scholar 

  16. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. doi:10.1038/nature07083

    Article  CAS  PubMed  Google Scholar 

  17. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14(13):2087–2096. doi:10.1096/fj.99-1049com

    Article  CAS  PubMed  Google Scholar 

  18. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956. doi:10.1016/S0002-9440(10)64255-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ichise T, Yoshida N, Ichise H (2010) H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137(6):1003–1013. doi:10.1242/dev.043489

    Article  CAS  PubMed  Google Scholar 

  20. Martinez-Corral I, Olmeda D, Dieguez-Hurtado R, Tammela T, Alitalo K, Ortega S (2012) In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci USA. doi:10.1073/pnas.1115542109

    PubMed  PubMed Central  Google Scholar 

  21. Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24(1):71–80. doi:10.1006/meth.2001.1159

    Article  CAS  PubMed  Google Scholar 

  22. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. doi:10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  23. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. doi:10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  24. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949

    Article  CAS  PubMed  Google Scholar 

  25. Hagerling R, Pollmann C, Kremer L, Andresen V, Kiefer F (2011) Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem Soc Trans 39(6):1674–1681. doi:10.1042/BST20110722

    Article  PubMed  Google Scholar 

  26. Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SW, Alitalo K, Ortega S, Makinen T (2015) Nonvenous origin of dermal lymphatic vasculature. Circ Res 116(10):1649–1654. doi:10.1161/CIRCRESAHA.116.306170

    Article  CAS  PubMed  Google Scholar 

  27. Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Lavina B, Fruttiger M, Adams RH, Saur D, Betsholtz C, Ortega S, Alitalo K, Graupera M, Makinen T (2015) cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell reports. doi:10.1016/j.celrep.2015.02.026

    PubMed  Google Scholar 

  28. Karpanen T, Makinen T (2006) Regulation of lymphangiogenesis–from cell fate determination to vessel remodeling. Exp Cell Res 312(5):575–583. doi:10.1016/j.yexcr.2005.10.034

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu K, Morikawa S, Kitahara S, Ezaki T (2009) Local lymphogenic migration pathway in normal mouse spleen. Cell Tissue Res 338(3):423–432. doi:10.1007/s00441-009-0888-5

    Article  PubMed  Google Scholar 

  30. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315. doi:10.1038/nature09493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R, Hasegawa M, Nishikawa S, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696. doi:10.1152/ajpheart.00015.2009

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140. doi:10.1038/75973

    Article  CAS  PubMed  Google Scholar 

  33. You Y, Bersgtram R, Klemm M, Nelson H, Jaenisch R, Schimenti J (1998) Utility of C57BL/6 J × 129/SvJae embryonic stem cells for generating chromosomal deletions: tolerance to gamma radiation and microsatellite polymorphism. Mamm Genome 9(3):232–234

    Article  CAS  PubMed  Google Scholar 

  34. Behringer RGM, Vintersten K, Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory press, Cold Spring

    Google Scholar 

Download references

Acknowledgments

The support of the Spanish National Cancer Research Centre (CNIO) Transgenesis, Comparative Pathology and Animal Facility Core Units is greatly acknowledged. We also thank the Uppsala University Animal Units for animal husbandry. This work was supported by the Ministry of Science and Innovation of Spain: Grants BIO2009-09488 and BIO2006-03213 (to S.O.) and FPU fellowship (to IM-C), the CNIO, the Lymphatic Education and Research Network (postdoctoral fellowship to M.F.) and the Swedish Research Council and European Research Council (ERC-2014-CoG 646849) (to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagrario Ortega.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2016_9505_MOESM1_ESM.tif

Supplementary Figure 1: Effect of prolonged TAM diet in Vegfr3-CreER T2 ; R26-LSL-LacZ heterozygous mice. a) Whole mount (diaphragm and peritoneum) or frozen sections from different organs from Vegfr3-CreER T2 ; R26-LSL-lacZ mice, stained with X-Gal for LacZ expression. Mice were treated during 3, 5 or 7 consecutive weeks with TAM diet, starting at 4 weeks of age. Scale bars: 100 μm (Frozen sections), 1 mm (whole mount). (TIFF 6483 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Corral, I., Stanczuk, L., Frye, M. et al. Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system. Angiogenesis 19, 433–445 (2016). https://doi.org/10.1007/s10456-016-9505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9505-x

Keywords

Navigation