Skip to main content

Advertisement

 Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior

  • S.I. : Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

SIS:

Small intestinal submucosa

UBM:

Urinary bladder matrix

GAGs:

Glycosaminoglycans

SDS:

Sodium dodecyl sulfate

DOC:

Sodium deoxycholate

ToF–SIMS:

Time of flight secondary ion mass spectroscopy

HMDI:

Hexamethylene diisocyanate

MBV:

Matrix bound nanovesicles

FDA:

United States Food and Drug Administration

ISO:

International Organization for Standardization

HCT/P:

Human cell and tissue product

EtO:

Ethylene oxide

TOFT:

Tissue organization field theory

DAMPs:

Damage associated molecular patterns

PVSC:

Perivascular stem cells

References

  1. Agmon, G., and K. L. Christman. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr. Opin. Solid State Mater. Sci. 20:193–201, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Agrawal, V., S. A. Johnson, J. Reing, L. Zhang, S. Tottey, G. Wang, K. K. Hirschi, S. Braunhut, L. J. Gudas, and S. F. Badylak. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc. Natl. Acad. Sci. USA 107:3351–3355, 2010.

    CAS  PubMed  Google Scholar 

  3. Agrawal, V., S. Tottey, S. A. Johnson, J. M. Freund, B. F. Siu, and S. F. Badylak. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng: Part A 17:2435–2443, 2011.

    CAS  Google Scholar 

  4. Aguiari, P., L. Iop, F. Favaretto, C. M. L. Fidalgo, F. Naso, G. Milan, V. Vindigni, M. Spina, F. Bassetto, A. Bagno, R. Vettor, and G. Gerosa. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Biomed. Mater. 12:015021, 2017.

    PubMed  Google Scholar 

  5. Allman, A. J., T. B. McPherson, S. F. Badylak, L. C. Merrill, B. Kallakury, C. Sheehan, R. H. Raeder, and D. W. Metzger. Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation 71:1631–1640, 2001.

    CAS  PubMed  Google Scholar 

  6. Allman, A. J., T. B. McPherson, L. C. Merrill, S. F. Badylak, and D. W. Metzger. The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng. 8:53–62, 2002.

    CAS  PubMed  Google Scholar 

  7. Armour, A. D., J. S. Fish, K. A. Woodhouse, and J. L. Semple. A comparison of human and porcine acellularized dermis: Interactions with human fibroblasts in vitro. Plast. Reconstr. Surg. 117:845–856, 2006.

    CAS  PubMed  Google Scholar 

  8. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593, 2007.

    CAS  PubMed  Google Scholar 

  9. Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5:1–13, 2009.

    CAS  PubMed  Google Scholar 

  10. Badylak, S. F., and T. W. Gilbert. Immune response to biologic scaffold materials. Semin. Immunol. 20:109–116, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Badylak, S. F., T. Hoppo, A. Nieponice, T. W. Gilbert, J. M. Davison, and B. A. Jobe. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: A regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A 17:1643–1650, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Badylak, S. F., P. V. Kochupura, I. S. Cohen, S. V. Doronin, A. E. Saltman, T. W. Gilbert, D. J. Kelly, R. A. Ignotz, and G. R. Gaudette. The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant. 15(Supp 1):S29–S40, 2006.

    PubMed  Google Scholar 

  13. Badylak, S. F., B. Kropp, T. McPherson, H. Liang, and P. W. Snyder. Small intestional submucosa: A rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng. 4:379–387, 1998.

    CAS  PubMed  Google Scholar 

  14. Badylak, S. F., K. Park, N. Peppas, G. McCabe, and M. Yoder. Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp. Hematol. 29:1310–1318, 2001.

    CAS  PubMed  Google Scholar 

  15. Badylak, S. F., R. Tullius, K. Kokini, K. D. Shelbourne, T. Klootwyk, S. L. Voytik, M. R. Kraine, and C. Simmons. The use of xenogeneic small intestinal submucosa as a biomaterial for Achille’s tendon repair in a dog model. J. Biomed. Mater. Res. 29:977–985, 1995.

    CAS  PubMed  Google Scholar 

  16. Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:1835–1842, 2008.

    CAS  PubMed  Google Scholar 

  17. Baiguera, S., C. Del Gaudio, E. Lucatelli, E. Kuevda, M. Boieri, B. Mazzanti, A. Bianco, and P. Macchiarini. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35:1205–1214, 2014.

    CAS  PubMed  Google Scholar 

  18. Bailey, A. J., and W. J. Tromans. Effects of ionizing radiation on the ultrastructure of collagen fibrils. Radiat. Res. 23:145–155, 1964.

    CAS  PubMed  Google Scholar 

  19. Balestrini, J. L., A. Liu, A. L. Gard, J. Huie, K. M. S. Blatt, J. Schwan, L. Zhao, T. J. Broekelmann, R. P. Mecham, E. C. Wilcox, and L. E. Niklason. Sterilization of lung matrices by supercritical carbon dioxide. Tissue Eng. Part C Methods 22:260–269, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bao, J., Q. Wu, Y. Wang, Y. Li, L. Li, F. Chen, X. Wu, M. Xie, and H. Bu. Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold. Int. J. Mol. Med. 38:457–465, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Barakat, O., S. Abbasi, G. Rodriguez, J. Rios, R. P. Wood, C. Ozaki, L. S. Holley, and P. K. Gauthier. Use of decellularized porcine liver for engineering humanized liver organ. J. Surg. Res. 173:e11–e25, 2012.

    CAS  PubMed  Google Scholar 

  22. Beattie, A. J., T. W. Gilbert, J. P. Guyot, A. J. Yates, and S. F. Badylak. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. Part A 15:1119–1125, 2009.

    CAS  PubMed  Google Scholar 

  23. Berger, A. Th1 and Th2 responses: What are they ? BMJ 321:424, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernhardt, A., M. Wehrl, B. Paul, T. Hochmuth, M. Schumacher, K. Schütz, and M. Gelinsky. Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS ONE 10:1–19, 2015.

    Google Scholar 

  25. Bhrany, A. D., C. J. Lien, B. L. Beckstead, N. D. Futran, N. H. Muni, C. M. Giachelli, and B. D. Ratner. Crosslinking of an oesophagus acellular matrix tissue scaffold. J. Tissue Eng. Regen. Med. 2:365–372, 2008.

    CAS  PubMed  Google Scholar 

  26. Bissell, M. J., and T. G. Ram. Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: Role of the extracellular matrix. Environ. Health Perspect. 80:61–70, 1989.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonandrini, B., M. Figliuzzi, E. Papadimou, M. Morigi, N. Perico, F. Casiraghi, C. Dipl, F. Sangalli, S. Conti, A. Benigni, A. Remuzzi, and G. Remuzzi. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng. Part A 20:1486–1498, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Boruch, A. V., A. Nieponice, I. R. Qureshi, T. W. Gilbert, and S. F. Badylak. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J. Surg. Res. 161:217–225, 2010.

    PubMed  Google Scholar 

  29. Brennan, E. P., X. Tang, A. M. Stewart-Akers, L. J. Gudas, and S. F. Badylak. Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells. J. Tissue Eng. Regen. Med. 2:491–498, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. Mccallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.

    CAS  PubMed  Google Scholar 

  31. Browe, D. C., O. R. Mahon, P. J. Díaz-Payno, N. Cassidy, I. Dudurych, A. Dunne, C. T. Buckley, and D. J. Kelly. Glyoxal cross-linking of solubilised extracellular matrix to produce highly porous, elastic and chondro-permissive scaffolds for orthopaedic tissue engineering. J. Biomed. Mater. Res. Part A 2019. https://doi.org/10.1002/jbm.a.36731.

    Article  Google Scholar 

  32. Brown, B. N., C. A. Barnes, R. T. Kasick, R. Michel, T. W. Gilbert, D. Beer-Stolz, D. G. Castner, B. D. Ratner, and S. F. Badylak. Surface characterization of extracellular matrix scaffolds. Biomaterials 31:428–437, 2010.

    CAS  PubMed  Google Scholar 

  33. Brown, B. N., J. M. Freund, L. Han, J. P. Rubin, J. E. Reing, E. M. Jeffries, M. T. Wolf, S. Tottey, C. A. Barnes, B. D. Ratner, and S. F. Badylak. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng. Part C Methods 17:411–421, 2010.

    Google Scholar 

  34. Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.

    CAS  PubMed  Google Scholar 

  35. Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Burgkart, R., A. Tron, P. Prodinger, M. Culmes, J. Tuebel, M. Van Griensven, B. Saldamli, and A. Schmitt. Decellularized kidney matrix for perfused bone engineering. Tissue Eng. Part C Methods 20:553–561, 2014.

    PubMed  Google Scholar 

  37. Butler, C. E., N. K. Burns, K. T. Campbell, A. B. Mathur, M. V. Jaffari, and C. N. Rios. Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair. J. Am. Coll. Surg. 211:368–376, 2010.

    PubMed  Google Scholar 

  38. Campbell, K. T., N. K. Burns, C. N. Rios, A. B. Mathur, and C. E. Butler. Human versus non-cross-linked porcine acellular dermal matrix used for ventral hernia repair: Comparison of in vivo fibrovascular remodeling and mechanical repair strength. Plast. Reconstr. Surg. 127:2321–2332, 2011.

    CAS  PubMed  Google Scholar 

  39. Carver, D. A., A. W. Kirkpatrick, T. L. Eberle, and C. G. Ball. Performance of biological mesh materials in abdominal wall reconstruction: Study protocol for a randomised controlled trial. BMJ Open 9:e024091, 2019.

    PubMed  PubMed Central  Google Scholar 

  40. Casali, D. M., R. M. Handleton, T. Shazly, and M. A. Matthews. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. J. Supercrit. Fluids 131:72–81, 2018.

    CAS  Google Scholar 

  41. Cavallo, J. A., S. C. Greco, J. Liu, M. M. Frisella, C. R. Deeken, and B. D. Matthews. Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair. Hernia 19:207–218, 2015.

    CAS  PubMed  Google Scholar 

  42. Cebotari, S., I. Tudorache, T. Jaekel, A. Hilfiker, S. Dorfman, W. Ternes, A. Haverich, and A. Lichtenberg. Detergent decellularization of heart valves for tissue engineering: Toxicological effects of residual detergents on human endothelial cells. Artif. Organs 34:206–210, 2010.

    PubMed  Google Scholar 

  43. Chen, L., Z. He, B. Chen, M. Yang, Y. Zhao, W. Sun, Z. Xiao, J. Zhang, and J. Dai. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J. Mater. Sci. Mater. Med. 21:309–317, 2010.

    CAS  PubMed  Google Scholar 

  44. Cheng, A. M. Y. W., M. A. Abbas, and T. Tejirian. Outcome of abdominal wall hernia repair with biologic mesh: Permacol versus Strattice. Am. Surg. 80:999–1002, 2014.

    PubMed  Google Scholar 

  45. Cheng, N. C., B. T. Estes, H. A. Awad, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A 15:231–241, 2009.

    CAS  PubMed  Google Scholar 

  46. Cheng, N.-C., B. T. Estes, T.-H. Young, and F. Guilak. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng. Part A 19:484–496, 2012.

    PubMed  PubMed Central  Google Scholar 

  47. Choi, J. S., H. J. Yang, B. S. Kim, J. D. Kim, J. Y. Kim, B. Yoo, K. Park, H. Y. Lee, and Y. W. Cho. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J. Control. Release 139:2–7, 2009.

    CAS  PubMed  Google Scholar 

  48. Christo, S. N., K. R. Diener, A. Bachhuka, K. Vasilev, and J. D. Hayball. Innate Immunity and Biomaterials at the Nexus : Friends or Foes. Biomed Res. Int. 2015:342304, 2015.

    PubMed  PubMed Central  Google Scholar 

  49. Consigliere, P., I. Polyzois, T. Sarkhel, R. Gupta, O. Levy, and A. A. Narvani. Preliminary results of a consecutive series of large & massive rotator cuff tears treated with arthroscopic rotator cuff repairs augmented with extracellular matrix. Arch. Bone Jt. Surg. 5:14–21, 2017.

    PubMed  PubMed Central  Google Scholar 

  50. Constantinou, C. D., and S. A. Jimenez. Structure of cDNAs encoding the triple-helical domain of murine alpha 2 (VI) collagen chain and comparison to human and chick homologues. Use of polymerase chain reaction and partially degenerate oligonucleotide for generation of novel cDNA clones. Matrix 11:1–9, 1991.

    CAS  PubMed  Google Scholar 

  51. Cook, J. L., D. B. Fox, K. Kuroki, M. Jayo, and P. G. De Deyne. In vitro and in vivo comparison of five biomaterials used for orthopedic soft tissue augmentation. Am. J. Vet. Res. 69:148–156, 2008.

    PubMed  Google Scholar 

  52. Cortiella, J., J. Niles, A. Cantu, A. Brettler, A. Pham, G. Vargas, S. Winston, J. Wang, S. Walls, and J. E. Nichols. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng. Part A 16:2565–2580, 2010.

    CAS  PubMed  Google Scholar 

  53. Costa, A., J. D. Naranjo, R. Londono, and S. F. Badylak. Biologic scaffolds. Cold Spring Harb. Perspect. Biol. 7:a025676, 2017.

    Google Scholar 

  54. Courtman, D. W., B. F. Errett, and G. J. Wilson. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J. Biomed. Mater. Res. 55:576–586, 2001.

    CAS  PubMed  Google Scholar 

  55. Crapo, P. M., T. W. Gilbert, and D. V. M. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Crapo, P. M., C. J. Medberry, J. E. Reing, S. Tottey, Y. van der Merwe, K. E. Jones, and S. F. Badylak. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33:3539–3547, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Daly, A. B., J. M. Wallis, Z. D. Borg, R. W. Bonvillain, B. Deng, B. A. Ballif, D. M. Jaworski, G. B. Allen, and D. J. Weiss. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng. Part A 18:1–16, 2012.

    CAS  PubMed  Google Scholar 

  58. Davis, G. E., K. J. Bayless, M. J. Davis, and G. A. Meininger. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156:1489–1498, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. De Waele, J., K. Reekmans, J. Daans, H. Goossens, Z. Berneman, and P. Ponsaerts. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41:122–131, 2015.

    PubMed  Google Scholar 

  60. Dearth, C. L., T. J. Keane, C. A. Carruthers, J. E. Reing, L. Huleihel, C. A. Ranallo, E. W. Kollar, and S. F. Badylak. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomater. 33:78–87, 2016.

    CAS  PubMed  Google Scholar 

  61. Deeken, C. R., L. Melman, E. D. Jenkins, S. C. Greco, M. M. Frisella, and B. D. Matthews. Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J. Am. Coll. Surg. 212:880–888, 2011.

    PubMed  PubMed Central  Google Scholar 

  62. Dejardin, L. M., S. P. Arnoczky, B. J. Ewers, R. C. Haut, and R. B. Clarke. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa: Histologic and mechanical evaluation in dogs. Am. J. Sports Med. 29:175–184, 2001.

    CAS  PubMed  Google Scholar 

  63. del Barrio, J. L. A., M. Chiesa, N. Garagorri, N. Garcia-Urquia, J. Fernandez-Delgado, L. Bataille, A. Rodriguez, F. Arnalich-Montiel, T. Zarnowski, J. P. Á. de Toledo, J. L. Alio, and M. P. De Miguel. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp. Eye Res. 132:91–100, 2015.

    Google Scholar 

  64. Dellarco, V. L., W. M. Generoso, G. A. Sega, J. R. Fowle, D. Jacobson-Kram, and H. E. Brockman. Review of the mutagenicity of ethylene oxide. Environ. Mol. Mutagen. 16:85–103, 1990.

    CAS  PubMed  Google Scholar 

  65. Dellavalle, A., G. Maroli, Azzoni E. CovarelloD, A. Innocenzi, L. Perani, S. Antonini, R. Sambasivan, S. Brunelli, S. Tajbakhsh, and G. Cossu. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2:411–499, 2011.

    Google Scholar 

  66. Dequach, J. A., V. Mezzano, A. Miglani, S. Lange, G. M. Keller, and K. L. Christman. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5:1–11, 2010.

    Google Scholar 

  67. Dequach, J. A., S. H. Yuan, L. S. B. Goldstein, and K. L. Christman. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng. Part A 17:2583–2592, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Duan, Y., Z. Liu, J. O’Neill, L. Q. Wan, D. O. Freytes, and G. Vunjak-Novakovic. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J. Cardiovasc. Transl. Res. 4:605–615, 2011.

    PubMed  PubMed Central  Google Scholar 

  69. Dziki, J., S. Badylak, M. Yabroudi, B. Sicari, F. Ambrosio, K. Stearns, N. Turner, A. Wyse, M. L. Boninger, E. H. P. Brown, and J. P. Rubin. An acellular biologic scaffold treatment for volumetric muscle loss: Results of a 13-patient cohort study. NPJ Regen. Med. 1:16008, 2016.

    PubMed  PubMed Central  Google Scholar 

  70. Dziki, J. L., L. Huleihel, M. E. Scarritt, and S. F. Badylak. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Eng. Part A 23:1152–1159, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dziki, J. L., B. M. Sicari, M. T. Wolf, M. C. Cramer, and S. F. Badylak. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Eng. Part A 22:1129–1139, 2016.

    CAS  PubMed  Google Scholar 

  72. Dziki, J. L., D. S. Wang, C. Pineda, B. M. Sicari, T. Rausch, and S. F. Badylak. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J. Biomed. Mater. Res. Part A 105:138–147, 2017.

    CAS  Google Scholar 

  73. Efraim, Y., B. Schoen, S. Zahran, T. Davidov, G. Vasilyev, L. Baruch, E. Zussman, and M. Machluf. 3D structure and processing methods direct the biological attributes of ECM-based cardiac scaffolds. Sci. Rep. 9:1–13, 2019.

    CAS  Google Scholar 

  74. Exposito, J. Y., M. D’Alessio, M. Solursh, and F. Ramirez. Sea urchin collagen evolutionarily homologous to vertebrate pro-α2(I) collagen. J. Biol. Chem. 267:15559–15562, 1992.

    CAS  PubMed  Google Scholar 

  75. Faulk, D. M., C. A. Carruthers, H. J. Warner, C. R. Kramer, J. E. Reing, L. Zhang, A. D’Amore, and S. F. Badylak. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10:183–193, 2014.

    CAS  PubMed  Google Scholar 

  76. Faulk, D. M., J. D. Wildemann, and S. F. Badylak. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J. Clin. Exp. Hepatol. 5:69–80, 2015.

    PubMed  Google Scholar 

  77. Faust, A., A. Kandakatla, Y. Van Der Merwe, T. Ren, L. Huleihel, G. Hussey, J. D. Naranjo, S. Johnson, S. Badylak, and M. Steketee. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J. Biomater. Appl. 31:1277–1295, 2017.

    CAS  PubMed  Google Scholar 

  78. Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA 110:14360–14365, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709, 2011.

    CAS  PubMed  Google Scholar 

  80. French, K., A. Boopathy, J. DeQuach, L. Chingozha, H. Lu, K. L. Christman, and M. E. Davis. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 8:4357–4364, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Freytes, D. O., S. F. Badylak, T. J. Webster, L. A. Geddes, and A. E. Rundell. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials 25:2353–2361, 2004.

    CAS  PubMed  Google Scholar 

  82. Freytes, D. O., J. Martin, S. S. Velankar, A. S. Lee, and S. F. Badylak. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637, 2008.

    CAS  PubMed  Google Scholar 

  83. Freytes, D. O., J. D. O’Neill, Y. Duan-Arnold, E. Wrona, and G. Vunjak-Novakovic. Native cardiac extracellular matrix hydrogels for cultivation of human stem cell-derived cardiomyocytes. Methods Mol Biol 1181:69–81, 2014.

    PubMed  PubMed Central  Google Scholar 

  84. Freytes, D. O., A. E. Rundell, J. Vande Geest, D. A. Vorp, T. J. Webster, and S. F. Badylak. Analytically derived material properties of multilaminated extracellular matrix devices using the ball-burst test. Biomaterials 26:5518–5531, 2005.

    CAS  PubMed  Google Scholar 

  85. Freytes, D. O., R. M. Stoner, and S. F. Badylak. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater. 84B:408–414, 2008.

    CAS  Google Scholar 

  86. Freytes, D. O., R. S. Tullius, J. E. Valentin, A. M. Stewart-Akers, and S. F. Badylak. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J. Biomed. Mater. Res. A 87:862–872, 2008.

    PubMed  Google Scholar 

  87. Gaetani, R., C. Yin, N. Srikumar, R. Braden, P. A. Doevendans, J. P. G. Sluijter, and K. L. Christman. Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplant. 25:1653–1663, 2016.

    PubMed  Google Scholar 

  88. Geiger, S. E., O. A. Deigni, J. T. Watson, and B. A. Kraemer. Management of open distal lower extremity wounds with exposed tendons using porcine urinary bladder matrix. Wounds: A Compend. Clin. Res. Pract. 28:306–316, 2016.

    Google Scholar 

  89. Gilbert, T. W., J. Freund, and S. F. Badylak. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 152:135–139, 2009.

    CAS  PubMed  Google Scholar 

  90. Gilbert, T. W., A. Nieponice, A. R. Spievack, J. Holcomb, S. Gilbert, and S. F. Badylak. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. J. Surg. Res. 147:61–67, 2008.

    CAS  PubMed  Google Scholar 

  91. Gilbert, T. W., A. M. Stewart-Akers, A. Simmons-Byrd, and S. F. Badylak. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J. Bone Jt. Surg. Am. 89:621–630, 2007.

    Google Scholar 

  92. Gilbert, T. W., D. B. Stolz, F. Biancaniello, A. Simmons-Byrd, and S. F. Badylak. Production and characterization of ECM powder: Implications for tissue engineering applications. Biomaterials 26:1431–1435, 2005.

    CAS  PubMed  Google Scholar 

  93. Gilot, G. J., A. M. Alvarez-Pinzon, L. Barcksdale, D. Westerdahl, M. Krill, and E. Peck. Outcome of large to massive rotator cuff tears repaired with and without extracellular matrix augmentation: A prospective comparative study. Arthrosc. J. Arthrosc. Relat. Surg. 31:1459–1465, 2015.

    Google Scholar 

  94. Gilpin, S. E., X. Ren, T. Okamoto, J. P. Guyette, H. Mou, J. Rajagopal, D. J. Mathisen, J. P. Vacanti, and H. C. Ott. Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann. Thorac. Surg. 98:1721–1729, 2014.

    PubMed  PubMed Central  Google Scholar 

  95. Gilpin, A., and Y. Yang. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed Res. Int. 2017. https://doi.org/10.1155/2017/9831534.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Glasberg, S. B., and D. Light. AlloDerm and Strattice in breast reconstruction: A comparison and techniques for optimizing outcomes. Plast. Reconstr. Surg. 129:1223–1233, 2012.

    CAS  PubMed  Google Scholar 

  97. Godin, L. M., B. J. Sandri, D. E. Wagner, C. M. Meyer, A. P. Price, I. Akinnola, D. J. Weiss, and A. P. M. Panoskaltsis-Mortari. Decreased laminin expression by human lung epithelial cells and fibroblasts cultured in acellular lung scaffolds from aged mice. PLoS ONE 11:1–17, 2016.

    Google Scholar 

  98. Gordon, S., and P. R. Taylor. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953–964, 2005.

    CAS  PubMed  Google Scholar 

  99. Gouk, S.-S., T.-M. Lim, S.-H. Teoh, and W. Q. Sun. Alterations of human acellular tissue matrix by gamma irradiation: Histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed. Mater. Res. Part B Appl. Biomater. 84B:205–217, 2008.

    CAS  Google Scholar 

  100. Guler, S., B. Aslan, P. Hosseinian, and H. M. Aydin. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. Tissue Eng. Part C Methods 23:540–547, 2017.

    CAS  PubMed  Google Scholar 

  101. Harth, K. C., A. M. Broome, M. R. Jacobs, J. A. Blatnik, F. Zeinali, S. Bajaksouzian, and M. J. Rosen. Bacterial clearance of biologic grafts used in hernia repair: An experimental study. Surg. Endosc. 25:2224–2229, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hashimoto, Y., S. Funamoto, T. Kimura, K. Nam, T. Fujisato, and A. Kishida. The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32:7060–7067, 2011.

    CAS  PubMed  Google Scholar 

  103. Haykal, S., Y. Zhou, P. Marcus, M. Salna, T. Machuca, S. O. P. Hofer, and T. K. Waddell. The effect of decellularization of tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. Biomaterials 34:5821–5832, 2013.

    CAS  PubMed  Google Scholar 

  104. Hennessy, R. S., S. Jana, B. J. Tefft, M. R. Helder, M. D. Young, R. R. Hennessy, N. J. Stoyles, and A. Lerman. Supercritical carbon dioxide–based sterilization of decellularized heart valves. JACC Basic Transl. Sci. 2:71–84, 2017.

    PubMed  PubMed Central  Google Scholar 

  105. Hirsh, S. L., D. R. McKenzie, N. J. Nosworthy, J. A. Denman, O. U. Sezerman, and M. M. M. Bilek. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Coll. Surf. B Biointerfaces 103:395–404, 2013.

    CAS  Google Scholar 

  106. HO, K. L., V. M. N. Witte, and E. T. Bird. 8-ply small intestinal submucosa tension-free sling: Spectrum of postoperative inflammation. J. Urol. 171:268–271, 2004.

    PubMed  Google Scholar 

  107. Hodde, J., A. Janis, D. Ernst, D. Zopf, D. Sherman, and C. Johnson. Effects of sterilization on an extracellular matrix scaffold: Part I. Composition and matrix architecture. J. Mater. Sci. Mater. Med. 18:537–543, 2007.

    CAS  PubMed  Google Scholar 

  108. Hodde, J., A. Janis, and M. Hiles. Effects of sterilization on an extracellular matrix scaffold: Part II. Bioactivity and matrix interaction. J. Mater. Sci. Mater. Med. 18:545–550, 2007.

    CAS  PubMed  Google Scholar 

  109. Hoganson, D. M., A. M. Meppelink, C. J. Hinkel, S. M. Goldman, X.-H. Liu, R. M. Nunley, J. P. Gaut, and J. P. Vacanti. Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials. J. Biomed. Mater. Res. A 102:2875–2883, 2014.

    CAS  PubMed  Google Scholar 

  110. Hong, X., Y. Yuan, X. Sun, M. Zhou, G. Guo, Q. Zhang, J. Hescheler, and J. Xi. Skeletal extracellular matrix supports cardiac differentiation of embryonic stem cells: A potential scaffold for engineered cardiac tissue. Cell. Physiol. Biochem. 45:319–331, 2018.

    CAS  PubMed  Google Scholar 

  111. Hoppo, T., S. F. Badylak, and B. A. Jobe. A novel esophageal-preserving approach to treat high-grade dysplasia and superficial adenocarcinoma in the presence of chronic gastroesophageal reflux disease. World J. Surg. 36:2390–2393, 2012.

    PubMed  Google Scholar 

  112. Huang, Y. H., F. W. Tseng, W. H. Chang, I. C. Peng, D. J. Hsieh, S. W. Wu, and M. L. Yeh. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater. 58:238–243, 2017.

    CAS  PubMed  Google Scholar 

  113. Huleihel, L., J. G. Bartolacci, J. L. Dziki, T. Vorobyov, B. Arnold, M. E. Scarritt, C. Pineda Molina, S. T. LoPresti, B. N. Brown, J. D. Naranjo, and S. F. Badylak. Matrix-bound nanovesicles recapitulate extracellular matrix effects on macrophage phenotype. Tissue Eng. Part A 23:1283–1294, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huleihel, L., J. L. Dziki, J. G. Bartolacci, T. Rausch, M. E. Scarritt, M. C. Cramer, T. Vorobyov, S. T. LoPresti, I. T. Swineheart, L. J. White, B. N. Brown, and S. F. Badylak. Macrophage phenotype in response to ECM bioscaffolds. Semin. Immunol. 29:2–13, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Huleihel, L., G. S. Hussey, J. D. Naranjo, L. Zhang, J. L. Dziki, N. J. Turner, D. B. Stolz, and S. F. Badylak. Matrix-bound nanovesicles within ECM bioscaffolds. Sci. Adv. 2:e1600502, 2016.

    PubMed  PubMed Central  Google Scholar 

  116. Hutter, H., B. E. Vogel, J. D. Plenefisch, C. R. Norris, R. B. Proenca, J. Spieth, C. Guo, S. Mastwal, X. Zhu, J. Scheel, and E. M. Hedgecock. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science (80-) 287:989–1010, 2000.

    CAS  Google Scholar 

  117. Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196:671–679, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Iozzo, R. V. Perlecan: A gem of a proteoglycan. Matrix Biol. 14:203–208, 1994.

    CAS  PubMed  Google Scholar 

  119. ISO 13408-1. Aseptic processing of health care products — Part 1: General requirements., 2008.

  120. ISO 22442-1. Medical devices utilizing animal tissues and their derivatives — Part 1: Application of risk management., 2015.

  121. Jackson, D. W., E. S. Grood, P. Wilcox, D. L. Butler, T. M. Simon, and J. P. Holden. The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats. Am. J. Sports Med. 16:101–105, 1988.

    CAS  PubMed  Google Scholar 

  122. Jackson, D. W., G. E. Windler, and T. M. Simon. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 18:1–11, 1990.

    CAS  PubMed  Google Scholar 

  123. Jang, J., T. G. Kim, B. S. Kim, S. W. Kim, S. M. Kwon, and D. W. Cho. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 33:88–95, 2016.

    CAS  PubMed  Google Scholar 

  124. Ji, R., N. Zhang, N. You, Q. Li, W. Liu, N. Jiang, J. Liu, H. Zhang, D. Wang, K. Tao, and K. Dou. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 33:8995–9008, 2012.

    CAS  PubMed  Google Scholar 

  125. John, T. T., N. Aggarwal, A. K. Singla, and R. A. Santucci. Intense inflammatory reaction with porcine small intestine submucosa pubovaginal sling or tape for stress urinary incontinence. Urology 72:1036–1039, 2008.

    PubMed  Google Scholar 

  126. Johnson, T. D., R. L. Braden, and K. L. Christman. Injectable ECM scaffolds for cardiac repair. Methods Mol. Biol. 1181:109–120, 2014.

    PubMed  PubMed Central  Google Scholar 

  127. Johnson, T. D., J. A. Dequach, R. Gaetani, J. Ungerleider, D. Elhag, V. Nigam, A. Behfar, and K. L. Christman. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater. Sci. 29:13–17, 2014.

    Google Scholar 

  128. Johnson, T. D., S. Y. Lin, and K. L. Christman. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology 22:494015, 2011.

    PubMed  PubMed Central  Google Scholar 

  129. Kaufmann, R., A. P. Jairam, I. M. Mulder, Z. Wu, J. Verhelst, S. Vennix, L. J. X. Giesen, M. C. Clahsen-van Groningen, and J. Jeekel. Lange JF (2019) Non-cross-linked collagen mesh performs best in a physiologic, noncontaminated rat model. Surg. Innov. 26:302–311, 2019.

    PubMed  PubMed Central  Google Scholar 

  130. Kaufmann, R., A. P. Jairam, I. M. Mulder, Z. Wu, J. Verhelst, S. Vennix, L. J. X. Giesen, M. C. Clahsen-van Groningen, J. Jeekel, and J. F. Lange. Characteristics of different mesh types for abdominal wall repair in an experimental model of peritonitis. Br. J. Surg. 104:1884–1893, 2017.

    CAS  PubMed  Google Scholar 

  131. Keane, T. J., and S. F. Badylak. The host response to allogeneic and xenogeneic biological scaffold materials. J. Tissue Eng. Regen. Med. 9:504–511, 2015.

    CAS  PubMed  Google Scholar 

  132. Keane, T. J., A. DeWard, R. Londono, L. T. Saldin, A. A. Castleton, L. Carey, A. Nieponice, E. Lagasse, and S. F. Badylak. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng. Part A 21:2293–2300, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Keane, T. J., J. Dziki, E. Sobieski, A. Smoulder, A. Castleton, N. Turne, L. J. White, and S. F. Badylak. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: Potential therapy for ulcerative colitis. J. Crohn’s Colitis 11:360–368, 2017.

    Google Scholar 

  134. Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781, 2012.

    CAS  PubMed  Google Scholar 

  135. Keane, T. J., I. T. Swinehart, and S. F. Badylak. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34, 2015.

    CAS  PubMed  Google Scholar 

  136. Kelly, D. J., A. B. Rosen, A. J. T. Schuldt, P. V. Kochupura, S. V. Doronin, I. A. Potapova, E. U. Azeloglu, S. F. Badylak, P. R. Brink, I. S. Cohen, and G. R. Gaudette. Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng. Part A 15:2189–2201, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kimmel, H., M. Rahn, and T. W. Gilbert. The clinical effectiveness in wound healing with extracellular matrix derived from porcine urinary bladder matrix: A case series on severe chronic wounds. J. Am. Col. Certif. Wound Spec. 2:55–59, 2010.

    PubMed  PubMed Central  Google Scholar 

  138. Knoll, L. D. Use of small intestinal submucosa graft for the surgical management of Peyronie’s disease. J. Urol. 178:2474–2478, 2007.

    PubMed  Google Scholar 

  139. Kochupura, P. V., E. U. Azeloglu, D. J. Kelly, S. V. Doronin, S. F. Badylak, I. B. Krukenkamp, I. S. Cohen, and G. R. Gaudette. Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation 112:144–149, 2005.

    Google Scholar 

  140. Koci, Z., K. Vyborny, J. Dubisova, I. Vackova, A. Jager, O. Lunov, K. Jirakova, and S. Kubinova. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng. Part C Methods 23:333–345, 2017.

    CAS  PubMed  Google Scholar 

  141. Kramer, J. Extracellular matrix. In: C. elegans II, edited by D. Riddle, T. Blumenthal, and B. Meyer. Boston: Springer, 1997.

    Google Scholar 

  142. Kropp, B. P., B. L. Eppley, C. D. Prevel, M. K. Rippy, R. C. Harruff, S. F. Badylak, M. C. Adams, R. C. Rink, and M. A. Keating. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 46:396–400, 1995.

    CAS  PubMed  Google Scholar 

  143. Kulig, K. M., X. Luo, E. B. Finkelstein, X. H. Liu, S. M. Goldman, C. A. Sundback, J. P. Vacanti, and C. M. Neville. Biologic properties of surgical scaffold materials derived from dermal ECM. Biomaterials 34:5776–5784, 2013.

    CAS  PubMed  Google Scholar 

  144. Lee, J. S., J. Shin, H. M. Park, Y. G. Kim, B. G. Kim, J. W. Oh, and S. W. Cho. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15:206–218, 2014.

    CAS  PubMed  Google Scholar 

  145. Liang, R., G. Yang, K. E. Kim, A. D’Amore, A. N. Pickering, C. Zhang, and S. L.-Y. Woo. Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression. J. Orthop. Transl. 3:114–122, 2015.

    Google Scholar 

  146. Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, C. J., S. D. Dib-Hajj, and S. G. Waxman. Fibroblast growth factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel rNav1.9a (NaN). J. Biol. Chem. 276:18925–18933, 2001.

    CAS  Google Scholar 

  148. Liu, X., N. Li, D. Gong, C. Xia, and Z. Xu. Comparison of detergent-based decellularization protocols for the removal of antigenic cellular components in porcine aortic valve. Xenotransplantation 25:1–13, 2018.

    Google Scholar 

  149. Liu, Z., R. Tang, Z. Zhou, Z. Song, H. Wang, and Y. Gu. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats. PLoS ONE 6:e20520, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Londono, R., J. L. Dziki, E. Haljasmaa, N. J. Turner, C. A. Leifer, and S. F. Badylak. The effect of cell debris within biologic scaffolds upon the macrophage response. J. Biomed. Mater. Res. Part A 105:2109–2118, 2017.

    CAS  Google Scholar 

  151. Loneker, A. E., D. M. Faulk, G. S. Hussey, A. D’Amore, and S. F. Badylak. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. J. Biomed. Mater. Res. A 104:957–965, 2016.

    CAS  PubMed  Google Scholar 

  152. Longaker, M. T., E. S. Chu, N. S. Adzick, M. Stern, M. R. Harrison, and R. Stern. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann. Surg. 213:292–296, 1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Longaker, M. T., D. J. Whitby, M. W. J. Ferguson, M. R. Harrison, T. M. Crombleholme, J. C. Langer, K. C. Cochrum, E. D. Verrier, and R. Stern. Studies in fetal wound healing: III. Early deposition of fibronectin distinguishes fetal from adult wound healing. J. Pediatr. Surg. 24:799–805, 1989.

    CAS  PubMed  Google Scholar 

  154. LoPresti, S. T., and B. N. Brown. Effect of source animal age upon macrophage response to extracellular matrix biomaterials. J. Immunol. Regen. Med. 1:57–66, 2018.

    PubMed  PubMed Central  Google Scholar 

  155. Lovvorn, III, H. N., D. T. Cheung, M. E. Nimni, N. Perelman, J. M. Estes, and N. S. Adzick. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34:218–223, 1999.

    PubMed  Google Scholar 

  156. Lu, Q., M. Li, Y. Zou, and T. Cao. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J. Control. Release 174:43–50, 2014.

    CAS  PubMed  Google Scholar 

  157. Lumpkins, S. B., N. Pierre, and P. S. McFetridge. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 4:808–816, 2008.

    PubMed  Google Scholar 

  158. Ma, B., X. Wang, C. Wu, and J. Chang. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen. Biomater. 1:81–89, 2014.

    PubMed  PubMed Central  Google Scholar 

  159. Manji, R. A., L. F. Zhu, N. K. Nijjar, D. C. Rayner, G. S. Korbutt, T. A. Churchill, R. V. Rajotte, A. Koshal, and D. B. Ross. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation 114:318–327, 2006.

    CAS  PubMed  Google Scholar 

  160. Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:176–185, 2013.

    CAS  PubMed  Google Scholar 

  161. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.

    CAS  PubMed  Google Scholar 

  162. Mase, V., J. Hsu, S. Wolf, J. Wenke, D. Baer, J. Owens, S. Badylak, and T. Walters. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33:511, 2010.

    PubMed  Google Scholar 

  163. Matuska, A. M., and P. S. McFetridge. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; Implications for stem cell adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 103:397–406, 2015.

    Google Scholar 

  164. Medberry, C. J., P. M. Crapo, B. F. Siu, C. A. Carruthers, M. T. Wolf, S. P. Nagarkar, V. Agrawal, K. E. Jones, J. Kelly, S. A. Johnson, S. S. Velankar, S. C. Watkins, M. Modo, and S. F. Badylak. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34:1033–1040, 2013.

    CAS  PubMed  Google Scholar 

  165. Melman, L., E. D. Jenkins, N. A. Hamilton, L. C. Bender, M. D. Brodt, C. R. Deeken, S. C. Greco, M. M. Frisella, and B. D. Matthews. Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15:157–164, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Meng, F. W., P. F. Slivka, C. L. Dearth, and S. F. Badylak. Solubilized extracellular matrix from brain and urinary bladder elicits distinct functional and phenotypic responses in macrophages. Biomaterials 46:131–140, 2015.

    CAS  PubMed  Google Scholar 

  167. Mercuri, J. J., S. Patnaik, G. Dion, S. S. Gill, J. Liao, and D. T. Simionescu. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: Stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng. Part A 19:952–966, 2013.

    CAS  PubMed  Google Scholar 

  168. Merguerian, P. A., P. P. Reddy, D. J. Barrieras, G. J. Wilson, K. Woodhouse, D. J. Bagli, G. A. McLorie, and A. E. Khoury. Acellular bladder matrix allografts in the regeneration of functional bladders: Evaluation of large-segment (> 24 cm) substitution in a porcine model. BJU Int. 85:894–898, 2000.

    CAS  PubMed  Google Scholar 

  169. Mestak, O., Z. Spurkova, K. Benkova, P. Vesely, V. Hromadkova, J. Miletin, R. Juzek, J. Mestak, M. Molitor, and A. Sukop. Comparison of cross-linked and non-cross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model. Eplasty 14:172–183, 2014.

    Google Scholar 

  170. Meyer, S. R., B. Chiu, T. A. Churchill, L. Zhu, J. R. T. Lakey, and D. B. Ross. Comparison of aortic valve allograft decellularization techniques in the rat. J. Biomed. Mater. Res. 79A:254–262, 2006.

    CAS  Google Scholar 

  171. Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164:6166–6173, 2000.

    CAS  PubMed  Google Scholar 

  172. Miyazaki, K., and T. Maruyama. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials 35:8791–8800, 2014.

    CAS  PubMed  Google Scholar 

  173. Mora-Solano, C., and J. H. Collier. Engaging adaptive immunity with biomaterials. J. Mater. Chem. B 2:2409–2421, 2014.

    CAS  PubMed  Google Scholar 

  174. Moreau, M. F., Y. Gallois, M. F. Baslé, and D. Chappard. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 21:369–376, 2000.

    CAS  PubMed  Google Scholar 

  175. Morris, A. H., J. Chang, and T. R. Kyriakides. Inadequate processing of decellularized dermal matrix reduces cell viability in vitro and increases apoptosis and acute inflammation in vivo. Biores. Open Access 5(1):177–187, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Mosmann, T. R., and S. Sad. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17:138–146, 1996.

    CAS  PubMed  Google Scholar 

  177. Mulder, I. M., E. B. Deerenberg, W. A. Bemelman, J. Jeekel, and J. F. Lange. Infection susceptibility of crosslinked and non-crosslinked biological meshes in an experimental contaminated environment. Am. J. Surg. 210:159–166, 2015.

    PubMed  Google Scholar 

  178. Nakatsu, H., T. Ueno, A. Oga, M. Nakao, T. Nishimura, S. Kobayashi, and M. Oka. Influence of mesenchymal stem cells on stomach tissue engineering using small intestinal submucosa. J. Tissue Eng. Regen. Med. 9:296–304, 2015.

    CAS  PubMed  Google Scholar 

  179. Nakayama, K. H., C. C. I. Lee, C. A. Batchelder, and A. F. Tarantal. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS ONE 8:e64134, 2013.

    PubMed  PubMed Central  Google Scholar 

  180. Naso, F., A. Gandaglia, T. Bottio, V. Tarzia, M. B. Nottle, A. J. F. d’Apice, P. J. Cowan, E. Cozzi, C. Galli, I. Lagutina, G. Lazzari, L. Iop, M. Spina, and G. Gerosa. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation 20:252–261, 2013.

    PubMed  Google Scholar 

  181. Navarro-Tableros, V., M. B. Herrera Sanchez, F. Figliolini, R. Romagnoli, C. Tetta, and G. Camussi. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng. Part A 21:1929–1939, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ngo, M. D., H. M. Aberman, M. L. Hawes, B. Choi, and A. A. Gertzman. Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair. Cell Tissue Bank. 12:135–145, 2011.

    PubMed  PubMed Central  Google Scholar 

  183. Nieponice, A., F. F. Ciotola, F. Nachman, B. A. Jobe, T. Hoppo, R. Londono, S. Badylak, and A. E. Badaloni. Patch esophagoplasty: Esophageal reconstruction using biologic scaffolds. Ann. Thorac. Surg. 97:283–288, 2014.

    PubMed  Google Scholar 

  184. Nieponice, A., K. McGrath, I. Qureshi, E. J. Beckman, J. D. Luketich, T. W. Gilbert, and S. F. Badylak. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest. Endosc. 69:289–296, 2009.

    PubMed  Google Scholar 

  185. Novitsky, Y. W., S. B. Orenstein, and D. L. Kreutzer. Comparative analysis of histopathologic responses to implanted porcine biologic meshes. Hernia 18:713–721, 2014.

    CAS  PubMed  Google Scholar 

  186. O’Neill, J. D., D. O. Freytes, A. Anandappa, J. A. Oliver, and G. Vunjak-Novakovic. The regulation of growth and metabolism of kidney stem cell with regional specificity using extracellular matrix derived from kidney. Biomaterials 34:1–7, 2013.

    Google Scholar 

  187. Okumura, M., R. J. Matthews, B. Robb, G. W. Litman, P. Bork, and M. L. Thomas. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains. J. Immunol. 157:1569–1575, 1996.

    CAS  PubMed  Google Scholar 

  188. Omae, H., C. Zhao, L. S. Yu, K. N. An, and P. C. Amadio. Multilayer tendon slices seeded with bone marrow stromal cells: A novel composite for tendon engineering. J. Orthop. Res. 27:937–942, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Oswal, D., S. Korossis, S. Mirsadraee, H. Wilcox, and K. Watterson. Biomechanical characterization of decellularized and cross-linked bovine pericardium. J. Heart Valve Dis. 16:165–174, 2007.

    PubMed  Google Scholar 

  190. Pashos, N. C., M. E. Scarritt, Z. R. Eagle, J. M. Gimble, A. E. Chaffin, and B. A. Bunnell. Characterization of an acellular scaffold for a tissue engineering approach to the nipple-areolar complex reconstruction. Cells Tissues Organs 203:183–193, 2017.

    CAS  PubMed  Google Scholar 

  191. Pati, F., J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    CAS  PubMed  Google Scholar 

  192. Patil, P. B., P. B. Chogue, V. K. Kumar, S. Almstrom, H. Backdahl, D. Banerjee, G. Hernlenius, M. Olausson, and S. Sumitran-Holgersson. Recellularization of acellular human small intestine using bone marrow stem cells. Stem Cells Transl. Med. 2:307–315, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Perniconi, B., D. Coletti, P. Aulino, A. Costa, P. Aprile, L. Santacroce, E. Chiaravalloti, L. Coquelin, N. Chevallier, L. Teodori, S. Adamo, M. Marrelli, and M. Tatullo. Muscle acellular scaffold as a biomaterial: Effects on C2C12 cell differentiation and interaction with the murine host environment. Front. Physiol. 5:1–13, 2014.

    Google Scholar 

  194. Perniconi, B., A. Costa, P. Aulino, L. Teodori, S. Adamo, and D. Coletti. The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 32:7870–7882, 2011.

    CAS  PubMed  Google Scholar 

  195. Price, A. P., K. A. England, A. M. Matson, B. R. Blazar, and A. Panoskaltsis-Mortari. Development of a decellularized lung bioreactor system for bioengineering the lung: The matrix reloaded. Tissue Eng. Part A 16:2581–2591, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Quarti, A., S. Nardone, M. Colaneri, G. Santoro, and M. Pozzi. Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases. Interact. Cardiovasc. Thorac. Surg. 13:569–572, 2011.

    PubMed  Google Scholar 

  197. Rajabi-Zeleti, S., S. Jalili-Firoozinezhad, M. Azarnia, F. Khayyatan, S. Vahdat, S. Nikeghbalian, A. Khademhosseini, H. Baharvand, and N. Aghdami. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 35:970–982, 2014.

    CAS  PubMed  Google Scholar 

  198. Reddy, P. P., D. J. Barrieras, G. Wilson, D. J. Bagli, G. A. McLorie, A. E. Khoury, and P. A. Merguerian. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J. Urol. 164:936–941, 2000.

    CAS  PubMed  Google Scholar 

  199. Reing, J. E., B. N. Brown, K. A. Daly, J. M. Freund, T. W. Gilbert, S. X. Hsiong, A. Huber, K. E. Kullas, S. Tottey, M. T. Wolf, and S. F. Badylak. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 31:8626–8633, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Reing, J. E., L. Zhang, J. Myers-Irvin, K. E. Cordero, D. O. Freytes, E. Heber-Katz, K. Bedelbaeva, D. McIntosh, A. Dewilde, S. J. Braunhut, and S. F. Badylak. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A 15:605–614, 2009.

    CAS  PubMed  Google Scholar 

  201. Rieder, E., M. T. Kasimir, G. Silberhumer, G. Seebacher, E. Wolner, P. Simon, and G. Weigel. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 127:399–405, 2004.

    PubMed  Google Scholar 

  202. Rommer, E. A., M. Peric, and A. Wong. Urinary bladder matrix for the treatment of recalcitrant nonhealing radiation wounds. Adv. Skin Wound Care 26:450–455, 2013.

    PubMed  Google Scholar 

  203. Rosario, D. J., G. C. Reilly, E. A. Salah, M. Glover, A. J. Bullock, and S. MacNeil. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen. Med. 3:145–156, 2008.

    CAS  PubMed  Google Scholar 

  204. Ross, E. A., M. J. Williams, T. Hamazaki, N. Terada, W. L. Clapp, C. Adin, G. W. Ellison, M. Jorgensen, and C. D. Batich. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J. Am. Soc. Nephrol. 20:2338–2347, 2009.

    PubMed  PubMed Central  Google Scholar 

  205. Sadtler, K., B. W. Allen, K. Estrellas, F. Housseau, D. M. Pardoll, and J. H. Elisseeff. The scaffold immune microenvironment: Biomaterial-mediated immune polarization in traumatic and nontraumatic applications. Tissue Eng. Part A 23:1044–1053, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sadtler, K., K. Estrellas, B. W. Allen, M. T. Wolf, H. Fan, A. J. Tam, C. H. Patel, B. S. Luber, H. Wang, K. R. Wagner, J. D. Powell, F. Housseau, D. M. Pardoll, and J. H. Elisseeff. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352:366–370, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Sadtler, K., M. T. Wolf, S. Ganguly, C. A. Moad, L. Chung, S. Majumdar, F. Housseau, D. M. Pardoll, and J. H. Elisseeff. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 192:405–415, 2019.

    CAS  PubMed  Google Scholar 

  208. Saldin, L. T., M. C. Cramer, S. S. Velankar, L. J. White, and S. F. Badylak. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49:1–15, 2017.

    CAS  PubMed  Google Scholar 

  209. Sandor, M., H. Xu, J. Connor, J. Lombardi, J. R. Harper, R. P. Silverman, and D. J. McQuillan. Host response to implanted porcine-derived biologic materials in a primate model of abdominal wall repair. Tissue Eng. Part A 14:2021–2031, 2008.

    CAS  PubMed  Google Scholar 

  210. Santoso, E. G., K. Yoshida, Y. Hirota, M. Aizawa, O. Yoshino, A. Kishida, Y. Osuga, S. Saito, T. Ushida, and K. S. Furukawa. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS ONE 9:e103201, 2014.

    PubMed  PubMed Central  Google Scholar 

  211. Sarathchandra, P., R. T. Smolenski, A. H. Y. Yuen, A. H. Chester, S. Goldstein, A. E. Heacox, M. H. Yacoub, and P. M. Taylor. Impact of γ-irradiation on extracellular matrix of porcine pulmonary valves. J. Surg. Res. 176:376–385, 2012.

    CAS  PubMed  Google Scholar 

  212. Sasikumar, S., S. Chameettachal, B. Cromer, F. Pati, and P. Kingshott. Decellularized extracellular matrix hydrogels– cell behavior as function of matrix stiffness. Curr. Opin. Biomed. Eng. 10:123–133, 2019.

    Google Scholar 

  213. Sawada, K., D. Terada, T. Yamaoka, S. Kitamura, and T. Fujisato. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J. Chem. Technol. Biotechnol. 83:943–949, 2008.

    CAS  Google Scholar 

  214. Sawai, T., N. Usui, K. Sando, Y. Fukui, S. Kamata, A. Okada, N. Taniguchi, N. Itano, and K. Kimata. Hyaluronic acid of wound fluid in adult and fetal rabbits. J. Pediatr. Surg. 32:41–43, 1997.

    CAS  PubMed  Google Scholar 

  215. Schoen, F. J., and R. J. Levy. Calcification of tissue heart valve substitutes: Progress toward understanding and prevention. Ann. Thorac. Surg. 79:1072–1080, 2005.

    PubMed  Google Scholar 

  216. Scholl, F. G., M. M. Boucek, K.-C. Chan, L. Valdes-Cruz, and R. Perryman. Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: Human applications in congenital heart disease. World J. Pediatr. Congenit. Hear. Surg. 1:132–136, 2010.

    Google Scholar 

  217. Sclamberg, S. G., J. E. Tibone, J. M. Itamura, and S. Kasraeian. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J. Shoulder Elb. Surg. 13:538–541, 2004.

    Google Scholar 

  218. Sellaro, T. L., A. K. Ravindra, D. B. Stolz, and S. F. Badylak. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 13:2301–2310, 2007.

    CAS  PubMed  Google Scholar 

  219. Seo, Y., Y. Jung, and S. H. Kim. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 67:270–281, 2018.

    CAS  PubMed  Google Scholar 

  220. Shah, M., P. Kc, K. M. Copeland, J. Liao, and G. Zhang. A thin layer of decellularized porcine myocardium for cell delivery. Sci. Rep. 8:1–11, 2018.

    Google Scholar 

  221. Shah, B. C., M. M. Tiwari, M. R. Goede, M. J. Eichler, R. R. Hollins, C. L. McBride, J. S. Thompson, and D. Oleynikov. Not all biologics are equal!. Hernia 15:165–171, 2011.

    CAS  PubMed  Google Scholar 

  222. Shamis, Y., E. Hasson, A. Soroker, E. Bassat, Y. Shimoni, T. Ziv, R. V. Sionov, and E. Mitrani. Organ-specific scaffolds for in vitro expansion, differentiation, and organization of primary lung cells. Tissue Eng. Part C Methods 17:861–870, 2011.

    CAS  PubMed  Google Scholar 

  223. Shin, K., K. H. Koo, J. Jeong, S. J. Park, D. J. Choi, Y.-G. Ko, and H. Kwon. Three-dimensional culture of salivary gland stem cell in orthotropic decellularized extracellular matrix hydrogels. Tissue Eng. Part A 2019. https://doi.org/10.1089/ten.tea.2018.0308.

    Article  PubMed  Google Scholar 

  224. Shojaie, S., L. Ermini, C. Ackerley, J. Wang, S. Chin, B. Yeganeh, M. Bilodeau, M. Sambi, I. Rogers, J. Rossant, C. E. Bear, and M. Post. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: Requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 4:419–430, 2015.

    CAS  Google Scholar 

  225. Sicari, B. M., V. Agrawal, B. F. Siu, C. J. Medberry, C. L. Dearth, N. J. Turner, and S. F. Badylak. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 18:1941–1948, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Sicari, B. M., J. L. Dziki, B. F. Siu, C. J. Medberry, C. L. Dearth, and S. F. Badylak. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 35:8605–8612, 2014.

    CAS  PubMed  Google Scholar 

  227. Sicari, B. M., S. A. Johnson, B. F. Siu, P. M. Crapo, K. A. Daly, H. Jiang, C. J. Medberry, S. Tottey, N. J. Turner, and S. F. Badylak. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 33:5524–5533, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Sicari, B. M., J. P. Rubin, C. L. Dearth, M. T. Wolf, F. Ambrosio, M. Boninger, N. J. Turner, D. J. Weber, T. W. Simpson, A. Wyse, E. H. P. Brown, J. L. Dziki, L. E. Fisher, S. Brown, and S. F. Badylak. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6:234ra58, 2014.

    PubMed  PubMed Central  Google Scholar 

  229. Sikin, A. M., and S. S. H. Rizvi. Recent patents on food, nutrition, and agriculture. Preface. Recent. Pat. Food Nutr. Agric 5:1, 2013.

    Google Scholar 

  230. Silva, A. C., S. C. Rodrigues, J. Caldeira, A. M. Nunes, V. Sampaio-Pinto, T. P. Resende, M. J. Oliveira, M. A. Barbosa, S. Thorsteinsdóttir, D. S. Nascimento, and P. Pinto-do-Ó. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials 104:52–64, 2016.

    CAS  PubMed  Google Scholar 

  231. Simsa, R., A. M. Padma, P. Heher, M. Hellström, A. Teuschl, L. Jenndahl, N. Bergh, and P. Fogelstrand. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS ONE 13:1–19, 2018.

    Google Scholar 

  232. Singelyn, J. M., and J. A. DeQuach. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30:5409–5416, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Sinha, P., D. Zurakowski, T. K. S. Kumar, D. He, C. Rossi, and R. A. Jonas. Effects of glutaraldehyde concentration, pretreatment time, and type of tissue (porcine versus bovine) on postimplantation calcification. J. Thorac. Cardiovasc. Surg. 143:224–227, 2012.

    CAS  PubMed  Google Scholar 

  234. Slaughter, M. S., K. G. Soucy, R. G. Matheny, B. C. Lewis, M. F. Hennick, Y. Choi, G. Monreal, M. A. Sobieski, G. A. Giridharan, and S. C. Koenig. Development of an extracellular matrix delivery system for effective intramyocardial injection in ischemic tissue. ASAIO J. 60:730–736, 2014.

    CAS  PubMed  Google Scholar 

  235. Soler, J. A., S. Gidwani, and M. J. Curtis. Early complications from the use of porcine dermal collagen implants (Permacol ™) as bridging constructs in the repair of massive rotator cuff tears: A report of 4 cases. Acta Orthop. Belg. 73:432–436, 2007.

    PubMed  Google Scholar 

  236. Sonnenschein, C., and A. M. Soto. The society of cells—Cancer and control of cell proliferation. New York: Springer Verlag, pp. 99–133, 1999.

    Google Scholar 

  237. Soto, A. M., and C. Sonnenschein. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 33:332–340, 2011.

    PubMed  PubMed Central  Google Scholar 

  238. Soucy, K. G., E. F. Smith, G. Monreal, G. Rokosh, B. B. Keller, F. Yuan, R. G. Matheny, A. M. Fallon, B. C. Lewis, L. C. Sherwood, M. A. Sobieski, G. A. Giridharan, S. C. Koenig, and M. S. Slaughter. Feasibility study of particulate extracellular matrix (P-ECM) and left ventricular assist device (HVAD) therapy in chronic ischemic heart failure bovine model. ASAIO J. 61:161–169, 2015.

    CAS  PubMed  Google Scholar 

  239. Spang, M. T., and K. L. Christman. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 68:1–14, 2018.

    CAS  PubMed  Google Scholar 

  240. Sun, Y., G. Chen, and Y. Lv. Effects of hypoxia on the biological behavior of MSCs seeded in demineralized bone scaffolds with different stiffness. Acta Mech. Sin. Xuebao 35:309–320, 2019.

    CAS  Google Scholar 

  241. Sun, W. Q., and P. Leung. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 4:817–826, 2008.

    PubMed  Google Scholar 

  242. Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116–126, 1999.

    CAS  PubMed  Google Scholar 

  243. Sutherland, A. J., E. C. Beck, S. C. Dennis, G. L. Converse, R. A. Hopkins, C. J. Berkland, and M. S. Detamore. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS ONE 10:1–13, 2015.

    Google Scholar 

  244. Toole, B. P., T. N. Wight, and M. I. Tammi. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 277:4593–4596, 2002.

    CAS  PubMed  Google Scholar 

  245. Tottey, S., S. A. Johnson, P. M. Crapo, J. E. Reing, L. Zhang, H. Jiang, C. J. Medberry, B. Reines, and S. F. Badylak. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 32:128–136, 2011.

    CAS  PubMed  Google Scholar 

  246. Turner, N. J., J. S. Badylak, D. J. Weber, and S. F. Badylak. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 176:490–502, 2012.

    CAS  PubMed  Google Scholar 

  247. Uriarte, J. J., P. N. Nonaka, N. Campillo, R. K. Palma, E. Melo, L. V. F. de Oliveira, D. Navajas, and R. Farré. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation. J. Mech. Behav. Biomed. Mater. 40:168–177, 2014.

    PubMed  Google Scholar 

  248. Uriel, S., D. Ph, E. Labay, M. Francis-sedlak, M. L. Moya, R. R. Weichselbaum, N. Ervin, Z. Cankova, E. M. Brey, and D. Ph. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng. Part C. Methods 15:309–321, 2009.

    CAS  PubMed  Google Scholar 

  249. U.S. Food and Drug Administration. Guidance for industry: Current good tissue practice (CGTP) and additional requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps)., 2011.

  250. U.S. Food and Drug Administration. Medical devices containing materials derived from animal sources (Except for in vitro diagnostic devices): Guidance for industry and Food and Drug Administration staff., 2019.

  251. Utomo, L., M. Pleumeekers, L. Nimeskern, S. Nürnberger, K. S. Stok, F. Hildner, and G. J. V. M. Van Osch. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomed. Mater. 10:015010, 2015.

    PubMed  Google Scholar 

  252. Valentin, J. E., J. S. Badylak, G. P. McCabe, and S. F. Badylak. Extracellular matrix bioscaffolds for orthopaedic applications: A comparative histologic study. J. Bone Jt. Surg. 88A:2673–2686, 2006.

    Google Scholar 

  253. Valentin, J. E., A. M. Stewart-Akers, T. W. Gilbert, and S. F. Badylak. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A 15:1687–1694, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Valentin, J. E., N. J. Turner, T. W. Gilbert, and S. F. Badylak. Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Van Der Merwe, Y., A. E. Faust, E. T. Sakalli, C. C. Westrick, G. Hussey, I. P. Con, V. L. N. Fu, S. F. Badylak, and M. B. Steketee. Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Sci. Rep. 9:3482, 2019.

    PubMed  PubMed Central  Google Scholar 

  256. VeDepo, M. C., E. E. Buse, R. W. Quinn, T. D. Williams, M. S. Detamore, R. A. Hopkins, and G. L. Converse. Species-specific effects of aortic valve decellularization. Acta Biomater. 50:249–258, 2017.

    PubMed  Google Scholar 

  257. Visser, J., P. A. Levett, N. C. R. Te Moller, J. Besems, K. W. M. Boere, M. H. P. Van Rijen, J. C. De Grauw, W. J. A. Dhert, P. R. Van Weeren, and J. Malda. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng. Part A 21:1195–1206, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Voytik-Harbin, S. L., A. O. Brightman, B. Z. Waisner, J. P. Robinson, and C. H. Lamar. Small intestinal submucosa: A tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng. 4:157–174, 1998.

    Google Scholar 

  259. Walton, J. R., N. K. Bowman, Y. Khatib, J. Linklater, and G. A. C. Murrell. Restore orthobiologic implant: Not recommended for augmentation of rotator cuff repairs. J. Bone Jt. Surg. Ser. A 89:786–791, 2007.

    Google Scholar 

  260. Wang, Y., J. Bao, X. Wu, Q. Wu, Y. Li, Y. Zhou, L. Li, and H. Bu. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci. Rep. 6:1–16, 2016.

    Google Scholar 

  261. Wang, R. M., and K. L. Christman. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Adv. Drug Deliv. Rev. 96:77–82, 2016.

    PubMed  Google Scholar 

  262. Wang, L., J. A. Johnson, D. W. Chang, and Q. Zhang. Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 34:2641–2654, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Wang, R. M., T. D. Johnson, J. He, Z. Rong, M. Wong, V. Nigam, A. Behfar, Y. Xu, and K. L. Christman. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials 129:98–110, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Wang, Z., D. W. Long, Y. Huang, W. C. W. Chen, K. Kim, and Y. Wang. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomater. 87:140–151, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Wang, J. K., B. Luo, V. Guneta, L. Li, S. E. M. Foo, Y. Dai, T. T. Y. Tan, N. S. Tan, C. Choong, and M. T. C. Wong. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue. Mater. Sci. Eng. C 75:349–358, 2017.

    CAS  Google Scholar 

  266. Wang, Q., C. Zhang, L. Zhang, W. Guo, G. Feng, S. Zhou, Y. Zhang, T. Tian, Z. Li, and F. Huang. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J. Biomed. Mater. Res. A 102:4301–4308, 2014.

    PubMed  Google Scholar 

  267. Wassenaar, J. W., R. L. Braden, K. G. Osborn, and K. L. Christman. Modulating in vivo degradation rate of injectable extracellular matrix hydrogels. J. Mater. Chem. B 4:2794–2802, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Wassenaar, J. W., R. Gaetani, J. J. Garcia, R. L. Braden, C. G. Luo, D. Huang, A. N. DeMaria, J. H. Omens, and K. L. Christman. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J. Am. Coll. Cardiol. 67:1074–1086, 2016.

    PubMed  PubMed Central  Google Scholar 

  269. Wei, H. J., H. C. Liang, M. H. Lee, Y. C. Huang, Y. Chang, and H. W. Sung. Construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials 26:1905–1913, 2005.

    CAS  PubMed  Google Scholar 

  270. West, D. C., D. M. Shaw, P. Lorenz, N. S. Adzick, and M. T. Longaker. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int. J. Biochem. Cell Biol. 29:201–210, 1997.

    CAS  PubMed  Google Scholar 

  271. Whitby, D. J., and M. W. J. Ferguson. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 112:651–668, 1991.

    CAS  PubMed  Google Scholar 

  272. White, L. J., T. J. Keane, A. Smoulder, L. Zhang, A. A. Castleton, J. E. Reing, N. J. Turner, C. L. Dearth, and S. F. Badylak. The impact of sterilization upon extracellular matrix hydrogel structure and function. J. Immunol. Regen. Med. 2:11–20, 2018.

    Google Scholar 

  273. White, L. J., A. J. Taylor, D. M. Faulk, T. J. Keane, L. T. Saldin, J. E. Reing, I. T. Swinehart, N. J. Turner, B. D. Ratner, and S. F. Badylak. The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomater. 50:207–219, 2017.

    CAS  PubMed  Google Scholar 

  274. Williams, C., K. P. Quinn, I. Georgakoudi, and L. D. Black. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 10:194–204, 2014.

    CAS  PubMed  Google Scholar 

  275. Wolf, M. T., K. A. Daly, E. P. Brennan-Pierce, S. A. Johnson, C. Carruthers, A. D. Amore, S. P. Nagarkar, S. S. Velankar, and S. F. Badylak. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33:7028–7038, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Wolf, M. T., K. A. Daly, J. E. Reing, and S. F. Badylak. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33:2916–2925, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Wolf, M. T., S. Ganguly, T. L. Wang, C. W. Anderson, K. Sadtler, R. Narain, C. Cherry, A. J. Parrillo, B. V. Park, G. Wang, F. Pan, S. Sukumar, D. M. Pardoll, and J. H. Elisseeff. A biologic scaffold–associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. Sci. Transl. Med. 11:eaat7973, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Wolf, M. T., Y. Vodovotz, S. Tottey, B. N. Brown, and S. F. Badylak. Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Eng. Part C Methods 21:148–159, 2015.

    CAS  PubMed  Google Scholar 

  279. Wood, J. D., A. Simmons-Byrd, A. R. Spievack, and S. F. Badylak. Use of a particulate extracellular matrix bioscaffold for treatment of acquired urinary incontinence in dogs. J. Am. Vet. Med. Assoc. 226:1095–1097, 2005.

    PubMed  Google Scholar 

  280. Yang, Q., J. Peng, Q. Guo, J. Huang, L. Zhang, J. Yao, F. Yang, S. Wang, W. Xu, A. Wang, and S. Lu. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 29:2378–2387, 2008.

    CAS  PubMed  Google Scholar 

  281. Yang, G., B. B. Rothrauff, H. Lin, R. Gottardi, P. G. Alexander, and R. S. Tuan. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34:9295–9306, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Yin, Z., X. Chen, T. Zhu, J. J. Hu, H. X. Song, W. L. Shen, L. Y. Jiang, B. C. Heng, J. F. Ji, and H. W. Ouyang. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater. 9:9317–9329, 2013.

    CAS  PubMed  Google Scholar 

  283. Young, D. A., V. Bajaj, and K. L. Christman. Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J. Biomed. Mater. Res. Part A 102:1641–1651, 2014.

    Google Scholar 

  284. Young, D. A., Y. S. Choi, A. J. Engler, and K. L. Christman. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34:8581–8588, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Young, D. A., K. C. McGilvray, N. Ehrhart, and T. W. Gilbert. Comparison of in vivo remodeling of urinary bladder matrix and acellular dermal matrix in an ovine model. Regen. Med. 13:759–773, 2018.

    PubMed  Google Scholar 

  286. Youngstrom, D. W., I. Rajpar, D. L. Kaplan, and J. G. Barrett. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J. Orthop. Res. 33:911–918, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Zambon, A., M. Vetralla, L. Urbani, M. F. Pantano, G. Ferrentino, M. Pozzobon, N. Pugno, P. De Coppi, N. Elvassore, and S. Spilimbergo. Dry acellular oesophageal matrix prepared by supercritical carbon dioxide. J. Supercrit. Fluids 115:33–41, 2016.

    CAS  Google Scholar 

  288. Zantop, T., T. W. Gilbert, M. Yoder, and S. F. Badylak. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J. Orthop. Res. 24:1299–1309, 2006.

    PubMed  Google Scholar 

  289. Zhang, X., and J. Dong. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem. Biophys. Res. Commun. 456:938–944, 2015.

    CAS  PubMed  Google Scholar 

  290. Zhang, J., B. Li, and J. H.-C. Wang. The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo. Biomaterials 32:6972–6981, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Zhao, Z. Q., J. D. Puskas, D. Xu, N. P. Wang, M. Mosunjac, R. A. Guyton, J. Vinten-Johansen, and R. Matheny. Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of C-kit cells, myofibroblasts, and macrophages after myocardial infarction. J. Am. Coll. Cardiol. 55:1250–1261, 2010.

    CAS  PubMed  Google Scholar 

  292. Zhou, Q., X. Ye, R. Sun, Y. Matsumoto, M. Moriyama, Y. Asano, Y. Ajioka, and Y. Sauo. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl. Med. 3:675–685, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Zhu, T., Q. Tang, Y. Shen, H. Tang, L. Chen, and J. Zhu. An acellular cerebellar biological scaffold: Preparation, characterization, biocompatibility and effects on neural stem cells. Brain Res. Bull. 113:48–57, 2015.

    CAS  PubMed  Google Scholar 

  294. Zuo, H., D. Peng, B. Zheng, X. Liu, Y. Wang, L. Wang, X. Zhou, and J. Liu. Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound. J. Mater. Sci. Mater. Med. 23:2933–2944, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

SF Badylak is the Chief Scientific Officer of ECM Therapeutics, Inc. MC Cramer has nothing to disclose.

Funding

MC Cramer was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health (5T32HL076124-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Badylak.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cramer, M.C., Badylak, S.F.  Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 48, 2132–2153 (2020). https://doi.org/10.1007/s10439-019-02408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02408-9

Keywords