Abstract
The pulsatile nature of blood flow is a key stimulus for the modulation of vascular cell differentiation. Within the vascular media, physiologic stress is manifested as cyclic strain, while in the lumen, cells are subjected to shear stress. These two respective biomechanical forces influence the phenotype and degree of differentiation or proliferation of smooth muscle cells and endothelial cells within the human vasculature. Elucidation of the effect of these mechanical forces on cellular differentiation has led to a surge of research into this area because of the implications for both the treatment of atherosclerotic disease and the future of vascular tissue engineering. The use of mechanical force to directly control vascular cell differentiation may be utilized as an invaluable engineering tool in the future. However, an understanding of the role of hemodynamics in vascular cell differentiation and proliferation is critical before application can be realized. Thus, this review will provide a current perspective on the latest research and controversy behind the role of hemodynamic forces for vascular cell differentiation and phenotype modulation. Furthermore, this review will illustrate the application of hemodynamic force for vascular tissue engineering and explicate future directions for research.
Similar content being viewed by others
References
Akimoto, S., M. Mitsumata, T. Sasaguri, and Y. Yoshida. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdil/Cipl/Wafl). Circ. Res. 86:185–190, 2000.
Albinsson, S., I. Nordstrom, and P. Hellstrand. Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J. Biol. Chem. 279:34849–34855, 2004.
Ando, J., T. Komatsuda, C. Ishikawa, and A. Kamiya. Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology 27:675–684, 1990.
Baguneid, M., D. Murray, H. J. Salacinski, B. Fuller, G. Hamilton, M. Walker, and A. M. Seifalian. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem. 39:151–157, 2004.
Ballermann, B. J., A. Dardik, E. Eng, and A. Liu. Shear stress and the endothelium. Kidney Int. Suppl. 67:S100–S108, 1998.
Birukov, K. G., V. P. Shirinsky, O. V. Stepanova, V. A. Tkachuk, A. W. Hahn, T. J. Resink, and V. N. Smirnov. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell Biochem. 144:131–139, 1995.
Browning, C. L., D. E. Culberson, I. V. Aragon, R. A. Fillmore, J. D. Croissant, R. J. Schwartz, and W. E. Zimmer. The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev. Biol. 194:18–37, 1998.
Cevallos, M., S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen. Cyclic Strain Induces Expression of Specific Smooth Muscle Cell Markers in Human Endothelial Cells. 38th Annual Meeting of the Association for Academic Surgery. Houston, TX, 2004.
Chapman, G. B., W. Durante, J. D. Hellums, and A. I. Schafer. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 278:H748–754, 2000.
Chen, X. L., S. E. Varner, A. S. Rao, J. Y. Grey, S. Thomas, C. K. Cook, M. A. Wasserman, R. M. Medford, A. K. Jaiswal, and C. Kunsch. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278:703–711, 2003.
Cunningham, J. J., J. J. Linderman, and D. J. Mooney. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann. Biomed. Eng. 30:927–935, 2002.
Dardik, A., A. Liu, and B. J. Ballermann. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J. Vasc. Surg. 29:157–167, 1999.
Dekker, R. J., S. van Soest, R. D. Fontijn, S. Salamanca, P. G. de Groot, E. VanBavel, H. Pannekoek, and A. J. Horrevoets. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698, 2002.
Duband, J. L., M. Gimona, M. Scatena, S. Sartore, and J. V. Small. Calponin and SM 22 as differentiation markers of smooth muscle: Spatiotemporal distribution during avian embryonic development. Differentiation 55:1–11, 1993.
Gimona, M., D. O. Furst, and J. V. Small. Metavinculin and vinculin from mammalian smooth muscle: Bulk isolation and characterization. J. Muscle Res. Cell Motil. 8:329–341, 1987.
Gloe, T., H. Y. Sohn, G. A. Meininger, and U. Pohl. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J. Biol. Chem. 277:23453–23458, 2002.
Grainger, D. J., J. C. Metcalfe, A. A. Grace, and D. E. Mosedale. Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J. Cell Sci. 111:2977–2988, 1998.
Hamilton, D. W., T. M. Maul, and D. A. Vorp. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications. Tissue Eng. 10:361–369, 2004.
Hipper, A., and G. Isenberg. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch. 440:19–27, 2000.
Hirschi, K. K., S. A. Rohovsky, and P. A. D’Amore. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141:805–814, 1998.
Hoerstrup, S. P., G. Zund, R. Sodian, A. M. Schnell, J. Grunenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20:164–169, 2001.
Imberti, B., D. Seliktar, R. M. Nerem, and A. Remuzzi. The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium 9:11–23, 2002.
Jockenhoevel, S., G. Zund, S. P. Hoerstrup, A. Schnell, and M. Turina. Cardiovascular tissue engineering: A new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIOJ. 48:8–11, 2002.
Kakisis, J. D., C. D. Liapis, and B. E. Sumpio. Effects of cyclic strain on vascular cells. Endothelium 11:17–28, 2004.
Kanda, K., and T. Matsuda. Behavior of arterial wall cells cultured on periodically stretched substrates. Cell Transplant 2:415–484, 1993.
Kashiwada, K., W. Nishida, K. Hayashi, K. Ozawa, Y. Yamanaka, H. Saga, T. Yamashita, M. Tohyama, S. Shimada, K. Sato, and K. Sobue. Coordinate expression of alpha-tropomyosin and caldesmon isoforms in association with phenotypic modulation of smooth muscle cells. J. Biol. Chem. 272:15396–15404, 1997.
Kaushal, S., G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7:1035–1040, 2001.
Kim, B. S., and D. J. Mooney. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng. 122:210–215, 2000.
Kim, B. S., J. Nikolovski, J. Bonadio, and D. J. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17:979–983, 1999.
Lee, R. T., C. Yamamoto, Y. Feng, S. Potter-Perigo, W. H. Briggs, K. T. Landschulz, T. G. Turi, J. F. Thompson, P. Libby, and T. N. Wight. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J. Biol. Chem. 276:13847–13851, 2001.
Lehoux, S., and A. Tedgui. Cellular mechanics and gene expression in blood vessels. J. Biomech. 36:631–643, 2003.
Li, Q., Y. Muragaki, H. Ueno, and A. Ooshima. Stretch-induced proliferation of cultured vascular smooth muscle cells and a possible involvement of local renin–angiotensin system and platelet-derived growth factor (PDGF). Hypertens. Res. 20:217–223, 1997.
Ma, Y. H., S. Ling, and H. E. Ives. Mechanical strain increases PDGF-B and PDGF beta receptor expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 265:606–610, 1999.
Mills, I., C. R. Cohen, K. Kamal, G. Li, T. Shin, W. Du, and B. E. Sumpio. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: Study of strain dependency and the role of protein kinase A and C signaling pathways. J. Cell Physiol. 170:228–234, 1997.
Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.
Niklason, L. E., W. Abbott, J. Gao, B. Klagges, K. K. Hirschi, K. Ulubayram, N. Conroy, R. Jones, A. Vasanawala, S. Sanzgiri, and R. Langer. Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg. 33:628–638, 2001.
Nikolovski, J., B. S. Kim, and D. J. Mooney. Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB J. 17:455–457, 2003.
O’Callaghan, C. J., and B. Williams. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: Role of TGF-beta(1). Hypertension 36:319–324, 2000.
Ott, M. J., and B. J. Ballermann. Shear stress-conditioned, endothelial cell-seeded vascular grafts: Improved cell adherence in response to in vitro shear stress. Surgery 117:334–339, 1995.
Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801, 2004.
Park, J. S., J. S. Chu, C. Cheng, F. Chen, D. Chen, and S. Li. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88:359–368, 2004.
Reusch, P., H. Wagdy, R. Reusch, E. Wilson, and H. E. Ives. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ. Res. 79:1046–1053, 1996.
Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29:923–934, 2001.
Shi, Q., S. Rafii, M. H. Wu, E. S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L. R. Sauvage, M. A. Moore, R. F. Storb, and W. P. Hammond. Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367, 1998.
Shields, J. M., R. J. Christy, and V. W. Yang. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J. Biol. Chem. 271:20009–20017, 1996.
Shirota, T., H. He, H. Yasui, and T. Matsuda. Human endothelial progenitor cell-seeded hybrid graft: Proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng. 9:127–136, 2003.
Singh, T. M., K. Y. Abe, T. Sasaki, Y. J. Zhuang, H. Masuda, and C. K. Zarins. Basic fibroblast growth factor expression precedes flow-induced arterial enlargement. J. Surg. Res. 77:165–173, 1998.
Smith, P. G., R. Moreno, and M. Ikebe. Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am. J. Physiol. 272:L20–27, 1997.
Stegemann, J. P., and R. M. Nerem. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31:391–402, 2003.
Sterpetti, A. V., A. Cucina, L. Santoro, B. Cardillo, and A. Cavallaro. Modulation of arterial smooth muscle cell growth by haemodynamic forces. Eur. J. Vasc. Surg. 6:16–20, 1992.
Tock, J., V. Van Putten, K. R. Stenmark, and R. A. Nemenoff. Induction of SM-alpha-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem. Biophys. Res. Commun. 301:1116–1121, 2003.
Van Gieson, E. J., W. L. Murfee, T. C. Skalak, and R. J. Price. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo. Circ. Res. 92:929–936, 2003.
Wang, H., S. Yan, M. Li, H. Chai, H. Yang, Q. Yao, and C. Chen. Shear stress induces endothelial cell differentiation from mouse embryo mesenchymal progenitor cells. J. Surg. Res. 121:274, 2004.
Wasserman, S. M., and J. N. Topper. Adaptation of the endothelium to fluid flow: In vitro analyses of gene expression and in vivo implications. Vasc. Med. 9:35–45, 2004.
Wasserman, S. M., F. Mehraban, L. G. Komuves, R. B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, and J. N. Topper. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics 12:13–23, 2002.
Wilson, E., K. Sudhir, and H. E. Ives. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J. Clin. Invest. 96:2364–2372, 1995.
Yamamoto, K., T. Takahashi, T. Asahara, N. Ohura, T. Sokabe, A. Kamiya, and J. Ando. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 95:2081–2088, 2003.
Zeidan, A., I. Nordstrom, S. Albinsson, U. Malmqvist, K. Sward, and P. Hellstrand. Stretch-induced contractile differentiation of vascular smooth muscle: Sensitivity to actin polymerization inhibitors. Am. J. Physiol. Cell Physiol. 284:C1387–1396, 2003.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Riha, G.M., Lin, P.H., Lumsden, A.B. et al. Roles of Hemodynamic Forces in Vascular Cell Differentiation. Ann Biomed Eng 33, 772–779 (2005). https://doi.org/10.1007/s10439-005-3310-9
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10439-005-3310-9