Skip to main content

Advertisement

Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Atherosclerosis is a chronic inflammatory vascular disease. As it is an inflammation process, many cellular and molecular events are involved at each step of the progression of atherosclerosis from an early fatty streak lesion to a highly dangerous rupture-prone plaque. Magnetic resonance imaging (MRI) is a well-established diagnostic tool for many kinds of chronic inflammation in various systems and organs, and recent improvements in spatial resolution and contrast strategies make it a promising technique for the characterization of inflammatory vessel walls. The first part of this review will briefly introduce the main cellular and molecular processes involved in atherosclerotic lesions; the second part will focus on the use of high-resolution MRI and present-generation contrast agents for plaque characterization; and the third part will present some recent and ongoing cellular and molecular MRI studies of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Cell adhesion molecule (ICAM, VCAM, Selectins)

CD44:

Lymphocyte integrin, interaction with extracellular matrix (hyaluronan)

CR3 or 4:

Complement receptors for fragments 3 and 4 expressed on monocytes

CRP:

C-reactive protein

GP Ib-IX-V:

Glycoprotein complex (=GP Ibα, GP Ibβ, GP IX and GP V), P selectin ligand

ICAM:

Intercellular adhesion molecule, LFA-1 ligand

IFN-α:

Interferon-alpha

IL:

Interleukin

LFA-1:

Lymphocyte function-associated antigen-1 (immunoglobulin)

MCP-1:

Monocyte chemoattractant protein-1

MMP:

Matrix metalloproteinase

oxLDL:

Oxidized low-density lipoprotein

PCAM:

Platelet/endothelial cell adhesion molecule

ROS:

Reactive oxygen species

sCD40L:

Soluble CD40 ligand

TNF-α:

Tumor necrosis factor-alpha

VCAM:

Vascular cell adhesion molecule, VLA-4 ligand

VLA-4:

Very late antigen-4, integrin

References

  1. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW and Insull W (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92: 1355–1374

    CAS  PubMed  Google Scholar 

  2. Aikawa M and Libby P (2004). The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 13: 125–138

    PubMed  Google Scholar 

  3. Libby P (2002). Inflammation in atherosclerosis. Nature 420: 868–874

    CAS  PubMed  Google Scholar 

  4. Mullenix PS, Andersen CA and Starnes BW (2005). Atherosclerosis as inflammation. Ann Vasc Surg 19: 130–138

    PubMed  Google Scholar 

  5. Lucas AR, Korol R and Pepine CJ (2006). Inflammation in atherosclerosis: some thoughts about acute coronary syndromes. Circulation 113: e728–e732

    CAS  PubMed  Google Scholar 

  6. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB and Gudnason V (2004). C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350: 1387–1397

    CAS  PubMed  Google Scholar 

  7. Chamorro A and Hallenbeck J (2006). The harms and benefits of inflammatory and immune responses in vascular disease. Stroke 37: 291–293

    PubMed  Google Scholar 

  8. Bonora E (2006). The metabolic syndrome and cardiovascular disease. Ann Med 38: 64–80

    CAS  PubMed  Google Scholar 

  9. Ballantyne CM and Nambi V (2005). Markers of inflammation and their clinical significance. Atheroscler Suppl 6: 21–29

    CAS  PubMed  Google Scholar 

  10. Armstrong EJ, Morrow DA and Sabatine MS (2006). Inflammatory biomarkers in acute coronary syndromes: part IV: matrix metalloproteinases and biomarkers of platelet activation. Circulation 113: e382–e385

    CAS  PubMed  Google Scholar 

  11. Armstrong EJ, Morrow DA and Sabatine MS (2006). Inflammatory biomarkers in acute coronary syndromes: part I: introduction and cytokines. Circulation 113: e72–e75

    PubMed  Google Scholar 

  12. Armstrong EJ, Morrow DA and Sabatine MS (2006). Inflammatory biomarkers in acute coronary syndromes: part II: acute-phase reactants and biomarkers of endothelial cell activation. Circulation 113: e152–e155

    CAS  PubMed  Google Scholar 

  13. Armstrong EJ, Morrow DA and Sabatine MS (2006). Inflammatory biomarkers in acute coronary syndromes: part III: biomarkers of oxidative stress and angiogenic growth factors. Circulation 113: e289–e292

    CAS  PubMed  Google Scholar 

  14. Koh KK, Han SH and Quon MJ (2005). Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 46: 1978–1985

    CAS  PubMed  Google Scholar 

  15. Furie B and Furie BC (2005). Thrombus formation in vivo. J Clin Invest 115: 3355–3362

    CAS  PubMed  Google Scholar 

  16. Gawaz M, Langer H and May AE (2005). Platelets in inflammation and atherogenesis. J Clin Invest 115: 3378–3384

    CAS  PubMed  Google Scholar 

  17. Frenette PS, Johnson RC, Hynes RO and Wagner DD (1995). Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci USA 92: 7450–7454

    CAS  PubMed  Google Scholar 

  18. McEver RP (2002). P-selectin and PSGL-1: exploiting connections between inflammation and venous thrombosis. Thromb Haemost 87: 364–365

    CAS  PubMed  Google Scholar 

  19. McEver RP and Cummings RD (1997). Perspectives series: cell adhesion in vascular biology.Role of PSGL-1 binding to selectins in leucocyte recruitment. J Clin Invest 100: 485–491

    CAS  PubMed  Google Scholar 

  20. Lopez JA and Dong JF (1997). Structure and function of the glycoprotein Ib-IX-V complex. Curr Opin Hematol 4: 323–329

    CAS  PubMed  Google Scholar 

  21. Dong JF, Sae-Tung G and Lopez JA (1997). Role of glycoprotein V in the formation of the platelet high-affinity thrombin-binding site. Blood 89: 4355–4363

    CAS  PubMed  Google Scholar 

  22. Blondin C, Bataille I and Letourneur D (2000). Polysaccharides for vascular cell targeting. Crit Rev Ther Drug Carrier Syst 17: 327–375

    CAS  PubMed  Google Scholar 

  23. Elangbam CS, Qualls CW Jr and Dahlgren RR (1997). Cell adhesion molecules–update. Vet Pathol 34: 61–73

    Article  CAS  PubMed  Google Scholar 

  24. Lasky LA (1995). Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64: 113–139

    CAS  PubMed  Google Scholar 

  25. Esko JD and Zhang L (1996). Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6: 663–670

    CAS  PubMed  Google Scholar 

  26. Wu JT and Wu LL (2006). Linking inflammation and atherogenesis: Soluble markers identified for the detection of risk factors and for early risk assessment. Clin Chim Acta 366: 74–80

    CAS  PubMed  Google Scholar 

  27. Lynch JR, Blessing R, White WD, Grocott HP, Newman MF and Laskowitz DT (2004). Novel diagnostic test for acute stroke. Stroke 35: 57–63

    PubMed  Google Scholar 

  28. Jaffer FA, Libby P and Weissleder R (2006). Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47: 1328–1338

    CAS  PubMed  Google Scholar 

  29. Tedgui A and Mallat Z (2006). Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86: 515–581

    CAS  PubMed  Google Scholar 

  30. Stokes KY and Granger DN (2005). The microcirculation: a motor for the systemic inflammatory response and large vessel disease induced by hypercholesterolaemia?. J Physiol 562: 647–653

    CAS  PubMed  Google Scholar 

  31. Gupta AK and Gupta M (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995–4021

    CAS  PubMed  Google Scholar 

  32. Nighoghossian N, Derex L and Douek P (2005). The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36: 2764–2772

    PubMed  Google Scholar 

  33. Corti R (2006). Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy. Pharmacol Ther 110: 57–70

    CAS  PubMed  Google Scholar 

  34. Rutt BK, Clarke SE and Fayad ZA (2004). Atherosclerotic plaque characterization by MR imaging. Curr Drug Targets Cardiovasc Haematol Disord 4: 147–159

    CAS  PubMed  Google Scholar 

  35. Spuentrup E and Botnar RM (2006). Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis. Eur Radiol 16: 1–14

    PubMed  Google Scholar 

  36. Clarke SE, Hammond RR, Mitchell JR and Rutt BK (2003). Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology. Magn Reson Med 50: 1199–1208

    PubMed  Google Scholar 

  37. Clarke SE, Beletsky V, Hammond RR, Hegele RA and Rutt BK (2006). Validation of automatically classified magnetic resonance images for carotid plaque compositional analysis. Stroke 37: 93–97

    PubMed  Google Scholar 

  38. Saam T, Cai JM, Cai YQ, An NY, Kampschulte A, Xu D, Kerwin WS, Takaya N, Polissar NL, Hatsukami TS and Yuan C (2005). Carotid plaque composition differs between ethno-racial groups: an MRI pilot study comparing mainland Chinese and American Caucasian patients. Arterioscler Thromb Vasc Biol 25: 611–616

    CAS  PubMed  Google Scholar 

  39. Itskovich VV, Samber DD, Mani V, Aguinaldo JG, Fallon JT, Tang CY, Fuster V and Fayad ZA (2004). Quantification of human atherosclerotic plaques using spatially enhanced cluster analysis of multicontrast-weighted magnetic resonance images. Magn Reson Med 52: 515–523

    PubMed  Google Scholar 

  40. Yuan C, Mitsumori LM, Beach KW and Maravilla KR (2001). Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221: 285–299

    CAS  PubMed  Google Scholar 

  41. Cappendijk VC, Cleutjens KB, Kessels AG, Heeneman S, Schurink GW, Welten RJ, Mess WH, Daemen MJ, van Engelshoven JM and Kooi ME (2005). Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology 234: 487–492

    PubMed  Google Scholar 

  42. Wasserman BA, Smith WI, Trout HH, Cannon RO 3rd, Balaban RS 3rd and Arai AE (2002). Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 223: 566–573

    PubMed  Google Scholar 

  43. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J and Hatsukami TS (2002). Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15: 62–67

    PubMed  Google Scholar 

  44. Wasserman BA, Wityk RJ, Trout HH and Virmani R 3rd (2005). Low-grade carotid stenosis: looking beyond the lumen with MRI. Stroke 36: 2504–2513

    PubMed  Google Scholar 

  45. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, Takaya N, Polissar NL and Yuan C (2005). In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112: 3437–3444

    PubMed  Google Scholar 

  46. Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS and Yuan C (2006). Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241: 459–468

    PubMed  Google Scholar 

  47. Yuan C, Kerwin WS, Yarnykh VL, Cai J, Saam T, Chu B,Takaya N, Ferguson MS, Underhill H, Xu D, Liu F and Hatsukami TS (2006). MRI of atherosclerosis in clinical trials. NMR Biomed 19: 636–654

    PubMed  Google Scholar 

  48. Yarnykh VL, Terashima M, Hayes CE, Shimakawa A, Takaya N, Nguyen PK, Brittain JH, McConnell MV and Yuan C (2006). Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging 23: 691–698

    PubMed  Google Scholar 

  49. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L and Weissleder R (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96: 327–336

    CAS  PubMed  Google Scholar 

  50. Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T and Yuan C (2003). Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 107: 851–856

    PubMed  Google Scholar 

  51. Mani V, Itskovich VV, Aguiar SH, Mizsei G, Aguinaldo JG, Samber DD, Macaluso FM and Fayad ZA (2005). Comparison of gated and non-gated fast multislice black-blood carotid imaging using rapid extended coverage and inflow/outflow saturation techniques. J Magn Reson Imaging 22: 628–633

    PubMed  Google Scholar 

  52. Thomas JB, Jong L, Spence JD, Wasserman BA, Rutt BK and Steinman DA (2005). Anthropometric data for magnetic resonance imaging of the carotid bifurcation. J Magn Reson Imaging 21:845–849

    PubMed  Google Scholar 

  53. Yarnykh VL and Yuan C (2006). Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med 55: 1083–1092

    PubMed  Google Scholar 

  54. Allkemper T, Bremer C, Matuszewski L, Ebert W and Reimer P (2002). Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 223: 432–438

    PubMed  Google Scholar 

  55. Chaabane L, Pellet N, Bourdillon MC, Desbleds MC, Sulaiman A, Hadour G, Thivolet-Bejui F, Roy P, Briguet A, Douek P and Canet SE (2004). Contrast enhancement in atherosclerosis development in a mouse model: in vivo results at 2 Tesla. Magn Reson Mater Phys 17: 188–195

    CAS  Google Scholar 

  56. Morawski AM, Winter PM, Crowder KC, Caruthers SD, Fuhrhop RW, Scott MJ, Robertson JD, Abendschein DR, Lanza GM and Wickline SA (2004). Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51: 480–486

    CAS  PubMed  Google Scholar 

  57. Wickline SA, Neubauer AM, Winter P, Caruthers S and Lanza G (2006). Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 26: 435–441

    CAS  PubMed  Google Scholar 

  58. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW and Nicolay K (2006). Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19: 142–164

    CAS  PubMed  Google Scholar 

  59. Roch A, Muller RN and Gillis P (1999). Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110: 5403–5411

    CAS  Google Scholar 

  60. Roch A, Muller RN and Gillis P (2001). Water relaxation by SPM particles: neglecting the magnetic anisotropy? A caveat. J Magn Reson Imaging 14: 94–96

    CAS  PubMed  Google Scholar 

  61. Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF and Daldrup-Link HE (2006). T1 and T2 relaxivity of intracellular and extracellular USPIO at 15 and 3T clinical MR scanning. Eur Radiol 16: 738–745

    PubMed  Google Scholar 

  62. Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D and Deux JF (2005). Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235: 959–967

    PubMed  Google Scholar 

  63. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W and Wolf KJ (2000). Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35: 460–471

    CAS  PubMed  Google Scholar 

  64. Ruehm SG, Corot C, Vogt P, Kolb S and Debatin JF (2001). Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103: 415–422

    CAS  PubMed  Google Scholar 

  65. Schmitz SA, Taupitz M, Wagner S, Coupland SE, Gust R, Nikolova A and Wolf KJ (2002). Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol 37: 405–411

    CAS  PubMed  Google Scholar 

  66. Yancy AD, Olzinski AR, Hu TC, Lenhard SC, Aravindhan K,Gruver SM, Jacobs PM, Willette RN and Jucker BM (2005).Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging 21: 432–442

    PubMed  Google Scholar 

  67. Rogers WJ and Basu P (2005). Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 178: 67–73

    CAS  PubMed  Google Scholar 

  68. Hyafil F, Laissy JP, Mazighi M, Tchetche D, Louedec L, Adle-Biassette H, Chillon S, Henin D, Jacob MP, Letourneur D and Feldman LJ (2006). Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 26: 176–181

    CAS  PubMed  Google Scholar 

  69. Herborn CU, Vogt FM, Lauenstein TC, Dirsch O, Corot C, Robert P and Ruehm SG (2006). Magnetic resonance imaging of experimental atherosclerotic plaque: comparison of two ultrasmall superparamagnetic particles of iron oxide. J Magn Reson Imaging 24(2): 388–393

    PubMed  Google Scholar 

  70. Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT and Naghavi M (2003). Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 107: 1545–1549

    PubMed  Google Scholar 

  71. Schmitz SA, Taupitz M, Wagner S, Wolf KJ, Beyersdorff D and Hamm B (2001). Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 14: 355–361

    CAS  PubMed  Google Scholar 

  72. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ and van Engelshoven JM (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107: 2453–2458

    CAS  PubMed  Google Scholar 

  73. Trivedi RA, JM UK-I, Graves MJ, Kirkpatrick PJ and Gillard JH (2004). Noninvasive imaging of carotid plaque inflammation. Neurology 63: 187–188

    CAS  PubMed  Google Scholar 

  74. Trivedi RA, Mallawarachi C, JM UK-I, Graves MJ, Horsley J, Goddard MJ, Brown A, Wang L, Kirkpatrick PJ, Brown J and Gillard JH (2006). Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26: 1601–1606

    CAS  PubMed  Google Scholar 

  75. Tang T, Howarth SP, Miller SR, Trivedi R, Graves MJ, King-Im JU, Li ZY, Brown AP, Kirkpatrick PJ, Gaunt ME and Gillard JH (2006). Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37: 2266–2270

    CAS  PubMed  Google Scholar 

  76. Corot C, Robert P, Idee JM and Port M (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58: 1471–1504

    CAS  PubMed  Google Scholar 

  77. Wiart M, Davoust N, Pialat JB, Desestret V, Moucharaffie S, Cho TH, Mutin M, Langlois JB, Beuf O, Honnorat J, Nighoghossian N and Berthezene Y (2007). MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 38: 131–137

    PubMed  Google Scholar 

  78. Mani V, Briley-Saebo KC, Itskovich VV, Samber DD and Fayad ZA (2006). Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 15 and 3T. Magn Reson Med 55: 126–35

    CAS  PubMed  Google Scholar 

  79. Heyn C, Bowen CV, Rutt BK and Foster PJ (2005). Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53: 312–320

    PubMed  Google Scholar 

  80. Swirski FK, Pittet MJ, Kircher MF, Aikawa E, Jaffer FA, Libby P and Weissleder R (2006). Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 103: 10340–10345

    CAS  PubMed  Google Scholar 

  81. Mulder WJ, Douma K, Koning GA, van Zandvoort MA, Lutgens E, Daemen MJ, Nicolay K and Strijkers GJ (2006). Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55: 1170–1174

    PubMed  Google Scholar 

  82. Briley-Saebo KC, Amirbekian V, Mani V, Aguinaldo JG, Vucic E, Carpenter D, Amirbekian S and Fayad ZA (2006). Gadolinium mixed-micelles: effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis. Magn Reson Med 56: 1336–1346

    CAS  PubMed  Google Scholar 

  83. Tsourkas A, Shinde-Patil VR, Kelly KA, Patel P, Wolley A, Allport JR and Weissleder R (2005). In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 16: 576–581

    CAS  PubMed  Google Scholar 

  84. Kang HW, Josephson L, Petrovsky A, Weissleder R and Bogdanov A Jr (2002). Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13: 122–127

    CAS  PubMed  Google Scholar 

  85. Laurent S, Vander Elst L, Fu Y and Muller RN (2004). Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 15: 99–103

    CAS  PubMed  Google Scholar 

  86. Boutry S, Burtea C, Laurent S, Toubeau G, Vander Elst L and Muller RN (2005). Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53: 800–807

    CAS  PubMed  Google Scholar 

  87. Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, Styles P and Anthony DC (2004). MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 51: 248–252

    CAS  PubMed  Google Scholar 

  88. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Wickline SA, Lanza GM. Endothelial alphanubeta3 Integrin-Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2006

  89. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM and Wickline SA (2003). Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108: 2270–2274

    CAS  PubMed  Google Scholar 

  90. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D,Lanza GM, Wickline SA and Kotyk JJ (2000). Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 44: 433–439

    CAS  PubMed  Google Scholar 

  91. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P and Weissleder R (2006). Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114: 1504–1511

    CAS  PubMed  Google Scholar 

  92. Alsaid H, De Souza G, Bourdillon MC, Chaubet F, Sulaiman A, Zahir C, Lancelot E, Briguet A, Letourneur D, Canet-Soulas E (2006) Molecular imaging of inflammation in atherosclerosis plaque using functionalized MRI contrast agent. In: Proc. Intl. Soc. Mag. Reson. Med., 14. Seattle, pp 3506

  93. Burtea C, Laurent S, Roch A, Vander Elst L and Muller RN (2005).C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. J Inorg Biochem 99: 1135–1144

    CAS  PubMed  Google Scholar 

  94. Montet X, Montet-Abou K, Reynolds F, Weissleder R and Josephson L (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia 8: 214–222

    CAS  PubMed  Google Scholar 

  95. Li H, Gray BD, Corbin I, Lebherz C, Choi H, Lund-Katz S, Wilson JM, Glickson JD and Zhou R (2004). MR and fluorescent imaging of low-density lipoprotein receptors. Acad Radiol 11:1251–1259

    PubMed  Google Scholar 

  96. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF and Fayad ZA (2004). Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109: 2890–2896

    CAS  PubMed  Google Scholar 

  97. Frias JC, Williams KJ, Fisher EA and Fayad ZA (2004). Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126: 16316–16317

    CAS  PubMed  Google Scholar 

  98. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S,Aguinaldo JG, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA and Fayad ZA (2007). Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104: 961–966

    CAS  PubMed  Google Scholar 

  99. Amirbekian S, Aguinaldo JS, Amirbekian V, Sirol M, Hyafil F, Vucic E, Mani V, Lancelot E, Corot C, Fayad Z (2006) Imaging of atherosclerosis in vivo using a magnetic resonance contrast probe molecularly targeted to matrix metalloproteinases (MMPs). In: Proc. Intl. Soc. Mag. Reson. Med., 14. Seattle, p 559

  100. Chen JW, Pham W, Weissleder R and Bogdanov A Jr (2004). Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52: 1021–1028

    CAS  PubMed  Google Scholar 

  101. Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, Chinen LK, Fuhrhop RW, Scherrer DE and Wickline SA (2002). Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106: 2842–2847

    CAS  PubMed  Google Scholar 

  102. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F, Grazette L, Rosenzweig A, Weissleder R and Josephson L (2005). Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54: 718–724

    PubMed  Google Scholar 

  103. van Tilborg GA, Mulder WJ, Chin PT, Storm G, Reutelingsperger CP, Nicolay K and Strijkers GJ (2006). Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjug Chem 17: 865–868

    CAS  PubMed  Google Scholar 

  104. van Tilborg GA, Mulder WJ, Deckers N, Storm G, Reutelingsperger CP, Strijkers GJ and Nicolay K (2006). Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis. Bioconjug Chem 17: 741–749

    CAS  PubMed  Google Scholar 

  105. Moody AR, Allder S, Lennox G, Gladman J and Fentem P (1999). Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet 353: 122–123

    CAS  PubMed  Google Scholar 

  106. Corti R, Osende JI, Fayad ZA, Fallon JT, Fuster V, Mizsei G, Dickstein E, Drayer B and Badimon JJ (2002). In vivo noninvasive detection and age definition of arterial thrombus by MRI. J Am Coll Cardiol 39: 1366–1373

    PubMed  Google Scholar 

  107. Botnar RM, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ and Spuentrup E (2004). In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 110: 1463–1466

    PubMed  Google Scholar 

  108. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC Jr, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ and Johnstone MT (2004). In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109: 2023–2029

    CAS  PubMed  Google Scholar 

  109. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA and Lanza GM (2001). Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104: 1280–1285

    CAS  PubMed  Google Scholar 

  110. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM and Wickline SA (2004). Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med 52: 1255–1262

    CAS  PubMed  Google Scholar 

  111. Coleman R, Hayek T, Keidar S and Aviram M (2006). A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem 108: 415–424

    CAS  PubMed  Google Scholar 

  112. Schwartz SM, Galis ZS, Rosenfeld ME and Falk E (2007). Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 27: 705–713

    CAS  PubMed  Google Scholar 

  113. Meir KS and Leitersdorf E (2004). Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 24: 1006–1014

    CAS  PubMed  Google Scholar 

  114. Jackson CL, Bennett MR, Biessen EA, Johnson JL and Krams R (2007). Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol 27: 714–720

    CAS  PubMed  Google Scholar 

  115. Priest AN, Ittrich H, Jahntz CL, Kooijman H, Weber C and Adam G (2006). Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide. Magn Reson Imaging 24: 1287–1293

    CAS  PubMed  Google Scholar 

  116. Chaabane L, Canet E, Serfaty JM, Contard F, Guerrier D, Douek P and Briguet A (2000). Microimaging of atherosclerotic plaque in animal models. Magn Reson Mater Phys 11: 58–60

    CAS  Google Scholar 

  117. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JG, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA and Fayad ZA (2006). MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56: 601–610

    PubMed  Google Scholar 

  118. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA,Aikawa M and Weissleder R (2007). Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115: 377–386

    CAS  PubMed  Google Scholar 

  119. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E and Weissleder R (2006). Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5: 85–92

    PubMed  Google Scholar 

  120. von Zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, Hofmann H, Bode C, Peter K (2006) Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis

  121. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE,Ntziachristos V, Weissleder R and Libby P (2006). Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114: 55–62

    PubMed  Google Scholar 

  122. Winter PM, Caruthers SD, Yu X, Song SK, Chen J, Miller B, Bulte JW, Robertson JD, Gaffney PJ, Wickline SA and Lanza GM (2003). Improved molecular imaging contrast agent for detection of human thrombus. Magn Reson Med 50: 411–416

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Canet-Soulas.

Additional information

This work was supported by the French Ministry of Research (Incentive Concerted Action Program, project CIVAREM), Rhône-Alpes Region grants, and an Ile de France and Paris Region ATHIM grant (Medicen Santé Ile de France cluster).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canet-Soulas, E., Letourneur, D. Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Magn Reson Mater Phy 20, 129–142 (2007). https://doi.org/10.1007/s10334-007-0078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-007-0078-y

Keywords