Skip to main content

Advertisement

Current pathological perspectives on chronic rejection in renal allografts

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Chronic rejection in renal transplantation clinically manifests as slow deterioration in allograft function and is a major contributor of late renal graft loss. Most cases of chronic rejection involve chronic antibody-mediated rejection (ABMR) triggered by the interaction of donor-specific alloantibodies with endothelial cells of the microcirculation. The evolution of the Banff classification involved a major revision of the ABMR criteria during the 2000s and led to the inclusion of detailed pathological characteristics of chronic ABMR in the 2013 Banff scheme, including microcirculation damage observed as newly formed basement membranes and arterial fibrous intimal proliferation. Inflammation of microvasculature including glomeruli and/or peritubular capillaries is also seen in substantial cases of chronic ABMR, defined as chronic active ABMR. Chronic active T cell-mediated rejection (TCMR) results from chronic T cell-mediated injury involving renal arteries but is less characterized under the current Banff classification, mainly due to the expanding histological criteria of chronic active ABMR. Characteristics shared by these two chronic rejection types can potentially cause diagnostic confusion. Hence, the diagnostic criteria or categories of chronic renal rejection require amendment of the current Banff classification. Assessment of rejection cases with molecular phenotyping advanced the mechanistic understanding of various dysfunctions in renal allograft, including ABMR and TCMR. Identification of disease-specific changes in gene expression by immunohistological studies, especially in chronic ABMR, has already been validated by several studies, warranting potential application to the pathological diagnostic process. This review provides an overview of current pathological perspectives on chronic rejection of renal allografts and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sellares J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12:388–99.

    Article  CAS  PubMed  Google Scholar 

  2. Farkash EA, Colvin RB. Diagnostic challenges in chronic antibody-mediated rejection. Nat Rev Nephrol. 2012;27:255–7.

    Article  Google Scholar 

  3. Haas M, Sis B, Racusen LC, et al. Banff 2013 meeting report: inclusion of C4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant. 2014;14:272–83.

    Article  CAS  PubMed  Google Scholar 

  4. Solez K, Colvin RB, Racusen LC, et al. Banff’05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant. 2007;7:518–26.

    Article  CAS  PubMed  Google Scholar 

  5. Gimeno J, Redondo D, Perez-Saez MJ, et al. Impact of the Banff 2013 classification on the diagnosis of suspicious versus conclusive late antibody-mediated rejection in allografts without acute dysfunction. Nephrol Dial Transplant. 2016;. doi:10.1093/ndt/gfw223.

    PubMed  Google Scholar 

  6. Remport A, Ivanyi B, Mathe Z, et al. Better understanding of transplant glomerulopathy secondary to chronic antibody-mediated rejection. Nephrol Dial Transplant. 2015;30:1825–33.

    Article  PubMed  Google Scholar 

  7. Cornell LD, Schinstock CA, Gandhi MJ, et al. Positive crossmatch kidney transplant recipients treated with Eculizumab: outcomes beyond 1 year. Am J Transplant. 2015;15:1293–302.

    Article  CAS  PubMed  Google Scholar 

  8. Stegall MD, Diwan T, Raghavaiah S, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant. 2011;11:2405–13.

    Article  CAS  PubMed  Google Scholar 

  9. Farooqui M, Alsaad K, Aloudah N, et al. Treatment-resistant recurrent membranoproliferative glomerulonephritis in renal allograft responding to rituximab: case report. Transplant Proc. 2015;47:823–6.

    Article  CAS  PubMed  Google Scholar 

  10. Albawardi A, Satoskar A, Von Visger J, et al. Proliferative glomerulonephritis with monoclonal IgG deposits recurs or may develop de novo in kidney allografts. Am J Kidney Dis. 2011;58:276–81.

    Article  CAS  PubMed  Google Scholar 

  11. Nadasdy T. Thrombotic microangiopathy in renal allografts: the diagnostic challenge. Transplantation. 2014;19:283–92.

    Google Scholar 

  12. Baid-Agrawal S, Farris AB, Pascual M, et al. Overlapping pathways to transplant glomerulopathy: chronic humoral rejection, hepatitis C infection, and thrombotic microangiopathy. Kidney Int. 2011;80:879–85.

    Article  PubMed  Google Scholar 

  13. Torres IB, Salcedo M, Moreso F, et al. Comparing transplant glomerulopathy in the absence of C4d deposition and donor-specific antibodies to chronic antibody-mediated rejection. Clin Transplant. 2014;28:1148–54.

    Article  CAS  PubMed  Google Scholar 

  14. Haas M, Mirocha J. Early ultrastructural changes in renal allografts: correlation with antibody-mediated rejection and transplant glomerulopathy. Am J Transplant. 2011;11:2123–31.

    Article  CAS  PubMed  Google Scholar 

  15. Sis B, Campbell PM, Mueller T, et al. Transplant glomerulopathy, late antibody-mediated rejection and the ABCD tetrad in kidney allograft biopsies for cause. Am J Transplant. 2007;7:1743–52.

    Article  CAS  PubMed  Google Scholar 

  16. Akalin E, Dinavahi R, Dikman S, et al. Transplant glomerulopathy may occur in the absence of donor-specific antibody and C4d staining. Clin J Am Soc Nephrol. 2007;2:1261–7.

    Article  PubMed  Google Scholar 

  17. Hayde N, Bao Y, Pullman J, et al. The clinical and genomic significance of donor-specific antibody-positive/C4d-negative and donor-specific antibody negative/C4d-negative transplant glomerulopathy. Clin J Am Soc Nephrol. 2013;8:2141–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aita K, Yamaguchi Y, Horita S, et al. Thickening of the peritubular capillary basement membrane is a useful diagnostic marker of chronic rejection in renal allografts. Am J Transplant. 2007;7:923–9.

    Article  CAS  PubMed  Google Scholar 

  19. Liapis G, Singh HK, Derebail VK, et al. Diagnostic significance of peritubular capillary basement membrane multilaminations in kidney allografts: old concepts revisited. Transplantation. 2012;94:620–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Drachenberg CB, Steinberger E, Hoehn-Saric E, et al. Specificity of intertubular capillary changes: comparative ultrastructural studies in renal allografts and native kidneys. Ultrastruct Pathol. 1997;21:227–33.

    Article  CAS  PubMed  Google Scholar 

  21. Ivanyi B, Fahmy H, Brown H, et al. Peritubular capillaries in chronic renal allograft rejection: a quantitative ultrastructural study. Hum Pathol. 2000;31:1129–38.

    Article  CAS  PubMed  Google Scholar 

  22. Gough J, Yilmaz A, Miskulin D, et al. Peritubular capillary basement membrane reduplication in allografts and native kidney disease: a clinicopathologic study of 278 consecutive renal specimens. Transplantation. 2001;71:1390–3.

    Article  CAS  PubMed  Google Scholar 

  23. Bissonnette ML, Henriksen KJ, Delaney K, et al. Medullary microvascular thrombosis and injury in sickle hemoglobin C disease. J Am Soc Nephrol. 2016;27:1300–4.

    Article  CAS  PubMed  Google Scholar 

  24. Gibson IW, Gwinner W, Brocker V, et al. Peritubular capillaritis in renal allografts: prevalence, scoring system, reproducibility and clinicopathological correlates. Am J Transplant. 2008;8:819–25.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta A, Broin PO, Bao Y, et al. Clinical and molecular significance of microvascular inflammation in transplant kidney biopsies. Kidney Int. 2016;89:217–25.

    Article  CAS  PubMed  Google Scholar 

  26. Sis B, Jhangri GS, Bunnag S, et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining. Am J Transplant. 2009;9:2312–23.

    Article  CAS  PubMed  Google Scholar 

  27. Hidalgo LG, Sis B, Sellares J, et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am J Transplant. 2010;10:1812–22.

    Article  CAS  PubMed  Google Scholar 

  28. Solez K, Colvin RB, Racusen LC, et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8:753–60.

    Article  CAS  PubMed  Google Scholar 

  29. Trpkov K, Campbell P, Pazderka F, et al. Pathologic features of acute renal allograft rejection associated with donor-specific antibody, analysis using the Banff grading schema. Transplantation. 1996;15:1586–92.

    Article  Google Scholar 

  30. Lefaucheur C, Nochy D, Hill GS, et al. Determinants of poor graft outcome in patients with antibody-mediated acute rejection. Am J Transplant. 2007;7:832–41.

    Article  CAS  PubMed  Google Scholar 

  31. Kozakowski N, Herkner H, Bohmig GA, et al. The diffuse extent of peritubular capillaritis in renal allograft rejection is an independent risk factor for graft loss. Kidney Int. 2015;88:332–40.

    Article  PubMed  Google Scholar 

  32. De Maria A, Bozzano F, Cantoni C, et al. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16 + NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci USA. 2011;108:728–32.

    Article  PubMed  Google Scholar 

  33. Kelly-Rogers J, Madrigal-Estebas L, O’Connor T, et al. Activation-induced expression of CD56 by T cells is associated with a reprogramming of cytolytic activity and cytokine secretion profile in vitro. Hum Immunol. 2006;67:863–73.

    Article  CAS  PubMed  Google Scholar 

  34. Sun Q, Zhang M, Xie K, et al. Endothelial injury in transplant glomerulopathy is correlated with transcription factor T-bet expression. Kidney Int. 2012;82:321–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Sun Q, Zhang M et al. Capillary dilation and rarefaction are correlated with intracapillary inflammation in antibody-mediated rejection. J Immunol Res. 2014;2014:10.

    Google Scholar 

  36. Venner JM, Hidalgo LG, Famulski KS, et al. The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant. 2015;15:1336–48.

    Article  CAS  PubMed  Google Scholar 

  37. Adam B, Afzali B, Dominy KM, et al. Multiplexed color-coded probe-based gene expression assessment for clinical molecular diagnostics in formalin-fixed paraffin embedded human renal allograft tissue. Clin Transplant. 2016;30:205–305.

    Article  Google Scholar 

  38. Paul LC, Hayry P, Foegh M et al. Diagnostic criteria for chronic rejection/accelerated graft atherosclerosis in heart and kidney transplants. Fourth Alexis Carrel Conference on Chronic Rejection and Accelerated Arteriosclerosis in Transplanted Organs. Transplant Proc. 1993;25:2022–3.

  39. Solez K, Axelsen RA, Benediktsson, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993;44:411–22.

    Article  CAS  PubMed  Google Scholar 

  40. Hill GS, Nochy D, Bruneval P, et al. Donor-specific antibodies accelerate arteriosclerosis after kidney transplantation. J Am So Nephrol. 2011;22:975–83.

    Article  Google Scholar 

  41. Bieri M, Oroszlan M, Farkas A, et al. Anti-HLA I antibodies induce VEGF production by endothelial cells, which increases proliferation and paracellular permeability. Int J Biochem Cell Biol. 2009;41:2422–30.

    Article  CAS  PubMed  Google Scholar 

  42. Hill GS, Nochy D, Loupy A. Accelerated arteriosclerosis: a form of transplant arteriopathy. Curr Opin Organ Transplant. 2010;15:11–5.

    Article  PubMed  Google Scholar 

  43. Loupy A, Vernerey D, Viglietti D, et al. Determinants and outcomes of accelerated arteriosclerosis major impact of circulating antibodies. Circ Res. 2015;117:470–82.

    Article  CAS  PubMed  Google Scholar 

  44. Lefaucheur C, Loupy A, Vernerey D, et al. Antibody-mediated vascular rejection of kidney allografts: a population-based study. Lancet. 2013;381:313–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sis B, Bagnasco SM, Cornell LD, et al. Isolated endarteritis and kidney transplant survival: a multicenter collaborative study. J Am So Nephrol. 2015;26:1216–27.

    Article  CAS  Google Scholar 

  46. Lim BJ, Kwon HJ, Bae YS, et al. Immunohistochemical analysis of infiltrating inflammatory cells in the isolated v-lesion of allograft kidney. Transplant Proc. 2015;47:622–5.

    Article  CAS  PubMed  Google Scholar 

  47. Dos Santos DC, Campos EF, Saraiva Camara NO, et al. Compartment-specific expression of natural killer cell markers in renal transplantation: immune profile in acute rejection. Transplant Int. 2016;29:443–52.

    Article  Google Scholar 

  48. van der Maaten L, Hinton G. Visualizing data using t-SNE. J. Mach. Lern. Res. 2008;9:2579–605.

    Google Scholar 

  49. Mannon RB, Matas AJ, Grande J, et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: a potent predictor of allograft failure. Am J Transplant. 2010;10:2066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mengel M, Reeve J, Bunnag S, et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant. 2009;9:169–78.

    Article  CAS  PubMed  Google Scholar 

  51. Famulski KS, Reeve J, de Freitas DG, et al. Kidney transplants with progressing chronic diseases express high levels of acute kidney injury transcripts. Am J Transplant. 2013;13:634–44.

    Article  CAS  PubMed  Google Scholar 

  52. Randhawa P. T-cell-mediated rejection of the kidney in the era of donor-specific antibodies: diagnostic challenges and clinical significance. Curr Opin Organ Transplant. 2015;20:325–32.

    Article  CAS  PubMed  Google Scholar 

  53. Dorje C, Midtvedt K, Holdaas H, et al. Early versus late acute antibody-mediated rejection in renal transplant recipients. Transplantation. 2013;96:79–84.

    Article  PubMed  Google Scholar 

  54. Sellares J, Reeve J, Loupy A, et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant. 2013;13:971–83.

    Article  CAS  PubMed  Google Scholar 

  55. Reeve J, Sellares J, Mengel M, et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013;13:645–55.

    Article  CAS  PubMed  Google Scholar 

  56. Halloran PF, Famulski KS, Reeve J. Molecular assessment of disease states in kidney transplant biopsy samples. Nat Rev Nephrol. 2016;12:534–48.

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi Y, Onitsuka S, Horita S, et al. Expression and distribution of thrombomodulin on endothelial Cells in kidney transplants with acute vascular rejection. Transplant Proc. 1997;29:16406.

    Article  Google Scholar 

  58. Meehan SM, Limsrichamrern S, Manaligod JR, et al. Platelets and capillary injury in acute humoral rejection of renal allografts. Hum Pathol. 2003;34:533–40.

    Article  CAS  PubMed  Google Scholar 

  59. Yamamoto I, Horita S, Takahashi T, et al. Glomerular expression of plasmalemmal vesicle-associated protein-1 in patients with transplant glomerulopathy. Am J Transplant. 2007;7:1954–60.

    Article  CAS  PubMed  Google Scholar 

  60. Yamamoto I, Horita S, Takahashi T, et al. Caveolin-1 expression is a distinct feature of chronic rejection-induced transplant capillaropathy. Am J Transplant. 2008;8:2627–35.

    Article  CAS  PubMed  Google Scholar 

  61. Xu-Dubois YC, Peltier J, Brocheriou I, et al. Markers of endothelial-to-mesenchymal transition: evidence for antibody-endothelium interaction during antibody- mediated rejection in kidney recipients. J Am Soc Nephrol. 2016;27:324–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Hara.

Ethics declarations

This is a review article, and does not contain any study involving human participants or animals by the author.

Conflict of interest

The author has declared that no conflict of interest exists.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, S. Current pathological perspectives on chronic rejection in renal allografts. Clin Exp Nephrol 21, 943–951 (2017). https://doi.org/10.1007/s10157-016-1361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1361-x

Keywords