Skip to main content
Log in

An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Here, we examined the combined effect of pulse wave photobiomodulation (PBM) with curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles (curcumin), in an experimental mouse model of acute skin wound. Thirty male adult mice were randomly allocated into 5 groups. Group 1 was served as the control group. Group 2 was a placebo and received distilled water, as a carrier of curcumin. Group 3 received laser (890 nm, 80 Hz, 0.2 J/cm2). Group 4 received curcumin by taking four injections around the wound. Group 5 received laser + curcumin. One full-thickness excisional round wound was made on the back of all the mice. On days 0, 4, 7, and 14, bacterial flora, wound surface area, and tensile strength were examined and microbiological examinations were performed. In case of wound closure, the two-way ANOVA shows that wound surface area of entire groups decreased progressively. However, the decrease in laser + curcumin and laser groups, and especially data from laser + curcumin group were statistically more significant, in comparison with the other groups (F statistics = 2.28, sig = 0.019). In terms of microbiology, the two-way ANOVA showed that laser, and laser + curcumin groups have statistically a lower bacterial count than the curcumin, control, and carrier groups (F statistics = 35, sig = 0 = 000). Finally, the one-way ANOVA showed that laser + curcumin, curcumin, and curcumin significantly increased wound strength, compared to the control and carrier groups. Furthermore, laser + curcumin significantly increased wound strength, compared to the control, laser, and curcumin groups (LSD test, p = 0.003, p = 0.002, and p = 0.005, respectively). In conclusion, curcumin nanoparticles, pulse wave laser, and pulse wave laser + curcumin nanoparticles accelerate wound healing, through a significant increase in wound closure rate, as well as wound strength, and a significant decrease in Staphylococcus aureus counts. Furthermore, the statistical analysis of our data suggests that the combined treatment of pulse wave laser + curcumin nanoparticles enhances the wound closure rate, and wound strength, compared to the laser and curcumin nanoparticles alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tricco AC, Cogo E, Isaranuwatchai W, Khan PA, Sanmugalingham G, Antony J, Hoch JS, Straus SE (2015) A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types. BMC Med 13:90. https://doi.org/10.1186/s12916-015-0326-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 4:560–582. https://doi.org/10.1089/wound.2015.0635

    Article  Google Scholar 

  3. Whitlock E, Morcom J, Spurling G, Janamian T, Ryan S (2014) Wound care costs in general practice. A cross-sectional study. Aust Fam Physician 43:143–146

    PubMed  Google Scholar 

  4. Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 146764:7. https://doi.org/10.1155/2013/146764

    Article  Google Scholar 

  5. Pereira RF, Bártolo PJ (2016) Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle) 5:208–229. https://doi.org/10.1089/wound.2013.0506

    Article  Google Scholar 

  6. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39:283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Curcumin as a wound healing agent. Life Sci 116:1–7. https://doi.org/10.1016/j.lfs.2014.08.016.

    Article  CAS  PubMed  Google Scholar 

  8. Jagetia GC, Rajanikant GK (2004) Effect of curcumin on radiation-impaired healing of excisional wounds in mice. J Wound Care 13:107–109. https://doi.org/10.12968/jowc.2004.13.3.26589

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, McClain SA, Lee HM, Elburki MS, Yu H, Gu Y, Zhang Y, Wolff M, Johnson F, Golub LM (2016) A novel chemically modified curcumin "normalizes" wound-healing in rats with experimentally induced type I diabetes: initial studies. J Diabetes Res 5782904:11. https://doi.org/10.1155/2016/5782904

    Article  CAS  Google Scholar 

  10. Dai X, Liu J, Zheng H, Wichmann J, Hopfner U, Sudhop S, Prein C, Shen Y, Machens H-G, Schilling AF (2017) Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Materials 9:e368. https://doi.org/10.1038/am.2017.31

    Article  CAS  Google Scholar 

  11. Soleimani H, Amini A, Taheri S, Sajadi E, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Pouriran R, Chien S, Bayat M (2018) The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J Photochem Photobiol B 181:23–30. https://doi.org/10.1016/j.jphotobiol.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  12. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5:58–62

    PubMed  PubMed Central  Google Scholar 

  13. Ramos FS, Maifrino LBM, Alves S, da Costa Aguiar Alves B, Perez MM, Feder D, Azzalis LA, Junqueira VBC, Fonseca FLA (2018) The effects of transcutaneous low-level laser therapy on the skin healing process: an experimental model. Lasers Med Sci 33:967–976. https://doi.org/10.1007/s10103-017-2429-x

    Article  PubMed  Google Scholar 

  14. de Medeiros ML, Araújo-Filho I, da Silva EM, de Sousa Queiroz WS, Soares CD, de Carvalho MG, Maciel MA (2017) Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 32:35–43. https://doi.org/10.1007/s10103-016-2080-y

    Article  Google Scholar 

  15. Hussein AJ, Alfars AA, Falih MA, Hassan AN (2011) Effects of a low level laser on the acceleration of wound healing in rabbits. N Am J Med Sci 3:193–197. https://doi.org/10.4297/najms.2011.3193.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ezzati A, Bayat M, Khoshvaghti A (2010) Low-level laser therapy with a pulsed infrared laser accelerates second-degree burn healing in rat: a clinical and microbiologic study. Photomed Laser Surg 28:603–611. https://doi.org/10.1089/pho.2009.2544

    Article  CAS  PubMed  Google Scholar 

  17. Bayat M, Azari A, Golmohammadi MG (2010) Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomed Laser Surg 28:465–470. https://doi.org/10.1089/pho.2008.2450

    Article  PubMed  Google Scholar 

  18. Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K (2015) Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 26:303–313. https://doi.org/10.1007/s00198-014-2857-4

    Article  CAS  PubMed  Google Scholar 

  19. Camargos GV, Bhattacharya P, van Lenthe GH, Del Bel Cury AA, Naert I, Duyck J, Vandamme K (2015) Mechanical competence of ovariectomy-induced compromised bone after single or combined treatment with high-frequency loading and bisphosphonates. Sci Rep 5:10795. https://doi.org/10.1038/srep10795

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki H, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Kamo K, Shimada Y (2010) Effects of combination treatment with alendronate and vitamin K(2) on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab 28:403–409. https://doi.org/10.1007/s00774-009-0148-5

    Article  CAS  PubMed  Google Scholar 

  21. Ringe JD (2009) Combination treatment in osteoporosis.Basic treatment plus specific osteoporosis medication. Med Monatsschr Pharm 32:137–140

    PubMed  Google Scholar 

  22. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  PubMed  Google Scholar 

  23. Sharifian Z, Bayat M, Alidoust M, Farahani RM, Bayat M, Rezaie F, Bayat H (2014) Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med Sci 29:1227–1235. https://doi.org/10.1007/s10103-013-1500-5

    Article  PubMed  Google Scholar 

  24. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280. https://doi.org/10.1021/cr1001832

    Article  CAS  PubMed  Google Scholar 

  25. Lodhia J, Mandarano G, Ferris Nj EP, Cowell S (2010) Development and use of iron oxide nanoparticles (part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 6:e12. https://doi.org/10.2349/biij.6.2.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naserzadeh P, Ghanbary F, Ashtari P, Seydi E, Ashtari K, Akbari M (2018) Biocompatibility assessment of titanium dioxide nanoparticles in mice fetoplacental unit. J Biomed Mater Res A 106:580–589. https://doi.org/10.1002/jbm.a.36221

    Article  CAS  PubMed  Google Scholar 

  27. Kasuya A, Tokura Y (2014) Attempts to accelerate wound healing. J Dermatol Sci 76:169–172. https://doi.org/10.1016/j.jdermsci.2014.11.001

    Article  PubMed  Google Scholar 

  28. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. https://doi.org/10.1021/mp700113r

    Article  CAS  Google Scholar 

  29. Stadler I, Lanzafame RJ, Evans R, Narayan V, Dailey B, Buehner N et al (2001) 830-nm irradiation increases the wound tensile strength in a diabetic murine model. Lasers Surg Med 28:220–226. https://doi.org/10.1002/lsm.1042

    Article  CAS  PubMed  Google Scholar 

  30. Reddy GK, Stehno-Bittel L, Enwemeka CS (2001) Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen 9:248–255. https://doi.org/10.1046/j.1524-475x.2001.00248.x.

    Article  CAS  PubMed  Google Scholar 

  31. Yang CC, Wang J, Chen SC, Hsieh YL (2013) Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J Tissue Eng Regen Med 10:120–131. https://doi.org/10.1002/term.1714

    Article  CAS  PubMed  Google Scholar 

  32. Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC (2015) Therapeutic applications of curcumin nanoformulations. AAPS J 17:1341–1356. https://doi.org/10.1208/s12248-015-9811-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Naserzadeh P, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Ashrafi Hafez A, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe3O4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. under review

  34. Demyanenko IA, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Fedorov AV, Manskikh VN, Zinovkin RA, Pletjushkina OY, Chernyak BV, Skulachev VP, Popova EN (2017) Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice. Oxidative Med Cell Longev 6408278:10. https://doi.org/10.1155/2017/6408278

    Article  CAS  Google Scholar 

  35. Silveira PC, Streck EL, Pinho R (2006) Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B 86:279–282. https://doi.org/10.1016/j.jphotobiol.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  36. Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N, Krishnan G (2016) Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy. Lasers Surg Med 49:380–386. https://doi.org/10.1002/lsm.22614

    Article  PubMed  Google Scholar 

  37. Shahnawaz Khan M, Bhaisare ML, Gopal J, Wu H-F (2015) Highly efficient gold nanorods assisted laser phototherapy for rapid treatment on mice wound infected by pathogenic bacteria. J Ind Eng Chem 36:49–58. https://doi.org/10.1016/j.jiec.12.011

    Article  Google Scholar 

Download references

Acknowledgments

The authors declare no financial support for this paper. Supported in part by NIH grant DK105692.

Funding

The authors declare no financial support for this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sufan Chien or Mohammad Bayat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All methods were accepted by the Medical Ethics Committee of Shahid Behehti University of Medical Sciences (IRB approval number: IR.SBMU.MSP/REC.1395.9124).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Kheirollahkhani, Y., Fatahi, P. et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med Sci 34, 779–791 (2019). https://doi.org/10.1007/s10103-018-2664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2664-9

Keywords

Navigation