Skip to main content

Parthenolide inhibits lipid accumulation via activation of Nrf2/Keap1 signaling during adipocyte differentiation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of parthenolide (PL), a sesquiterpene lactone obtained from feverfew plant, on lipid accumulation and signaling pathway in adipocytes were investigated. PL significantly inhibited lipid accumulation and adipogenic factors during adipogenesis. In particular, PL exerted its inhibitory effects in early adipogenic stage by regulating the early adipogenic factors. In addition, PL regulated the expression of adipokines; leptin, retinol binding protein, and resistin mRNAs were downregulated, whereas adiponectin gene expression was increased. Furthermore, PL significantly reduced intracellular reactive oxygen species (ROS) production during adipogenesis. This PL-mediated regulation of ROS production was associated with the regulation of nuclear factor erythroid 2-related factor (Nrf2)-kelch-like ECH-associated protein 1 (Keap1) pathway. PL effectively increased the abundance of Nrf2 and its target proteins, heme oxygenase-1 (HO-1) and NADPH dehydrogenase 1 (NQO1), by promoting the nuclear translocation of Nrf2, indicating that PL-mediated anti-adipogenic effects are associated with the Nrf2/Keap1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, Kawahara R, Hauner H, Jain MK. The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-γ expression and adipogenesis. J. Biol. Chem. 278: 2581-2584 (2003)

    Article  Google Scholar 

  • Birsoy K, Chen Z, Friedman J. Transcriptional regulation of adipogenesis by KLF4. Cell Metab. 7: 339-347 (2008)

    Article  CAS  Google Scholar 

  • Chan RS, Woo J. Prevention of overweight and obesity: how effective is the current public health approach. Int. J. Environ. Res. Public Health 7: 765-783 (2010)

    Article  Google Scholar 

  • Choi KM, Lee YS, Sin DM, Lee S, Lee MK, Lee YM, Hong JT, Yun YP, Yoo HS. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. Obesity 20: 1365-1371 (2012)

    Article  CAS  Google Scholar 

  • Denu RA, Hematti P. Effects of oxidative stress on mesenchymal stem cell biology. Oxid. Med. Cell Longev. 2016: 2989076 (2016)

    Article  Google Scholar 

  • Desprès JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881-887 (2006)

    Article  Google Scholar 

  • Duntas LH, Biondi B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid 23: 646-653 (2013)

    Article  CAS  Google Scholar 

  • Feltenstein MW, Schühly W, Warnick JE, Fischer NH, Sufka KJ. Anti-inflammatory and anti-hyperalgesic effects of sesquiterpene lactones from Magnolia and Bear’s foot. Pharmacol. Biochem. Behav. 79: 299-302 (2004)

    Article  CAS  Google Scholar 

  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 12: 3117-3132 (2011)

    Article  Google Scholar 

  • Festi D, Colecchia A., Sacco T, Bondi M, Roda E, Marchesini G. Hepatic steatosis in obese patients: clinical aspects and prognostic significance. Obesity Rev. 5: 27-42 (2004)

    Article  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761 (2004)

    Article  CAS  Google Scholar 

  • Gaikwad A, Long DJ 2nd, Stringer JL, Jaiswal AK. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J. Biol. Chem. 276: 22559-22564 (2001)

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119: 598-620 (1992)

    CAS  PubMed  Google Scholar 

  • Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 126: 126-132 (2012)

    Article  Google Scholar 

  • Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2: 282-286 (2001)

    Article  CAS  Google Scholar 

  • Kim JH, Kim CY, Kang B, Hong J, Choi HS. Dibenzoylmethane suppresses lipid accumulation and reactive oxygen species production through regulation of nuclear factor (erythroid-derived 2)-like 2 and insulin signaling in adipocytes. Biol. Pharm. Bull. 41: 680-689 (2018)

    Article  CAS  Google Scholar 

  • Klok M, Jakobsdottir S, Drent M. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Rev. 8: 21-34 (2007)

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7: 385-394 (2005)

    Article  CAS  Google Scholar 

  • Kusminski CM, McTernan PG, Kumar S. Role of resistin in obesity, insulin resistance and Type II diabetes. Clin. Sci. 109: 243-256 (2005)

    Article  CAS  Google Scholar 

  • Moraes-vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 19: 512-526 (2014)

    Article  CAS  Google Scholar 

  • Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 17: 124 (2016)

    Article  Google Scholar 

  • Nelson MH, Cobb SE, Shelton J. Variations in parthenolide content and daily dose of feverfew products. Am. J. Health Syst. Pharm. 59: 1527-1531 (2002)

    Article  CAS  Google Scholar 

  • Pan H, Guo J, Su Z. Advances in understanding the interrelations between leptin resistance and obesity. Physiol. Behav. 130: 157-169 (2014)

  • Pareek A, Suthar M, Rathore GS, Bansal V. Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacogn. Rev. 5: 103-110 (2011)

  • Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D, Yehuda-shinaidman E, Lee C, Lau J, Kurtz T W, CHAN JY. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 285: 9292-9300 (2010)

  • Pieralisi A, Martini C, Soto D, Vila MC, Calvo JC, Guerra LN. N-acetylcysteine inhibits lipid accumulation in mouse embryonic adipocytes. Redox Biol. 9: 39-44 (2016)

  • Ryter SW, Choi AM. Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models. Antioxid. Redox Signal. 7: 80-91 (2005)

    Article  CAS  Google Scholar 

  • Schroder K, Wandzioch K, Helmcke I, Brandes RP. Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler. Thromb. Vasc. Biol. 29: 239-245 (2009)

    Article  Google Scholar 

  • Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler T W. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell Biol. 27: 7188-7197 (2007)

    Article  CAS  Google Scholar 

  • Suh HJ, Cho SY, Kim EY, Choi HS. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem. Biol. Interact. 227: 53-62 (2015)

  • Szkudelska K, Szkudelski T, Nogowski L. Daidzein, coumestrol and zearalenone affect lipogenesis and lipolysis in rat adipocytes. Phytomedicine 9: 338-345 (2002)

    Article  CAS  Google Scholar 

  • Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc. Natl. Acad. Sci. 100: 44-49 (2003)

    Article  CAS  Google Scholar 

  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8: 1224-1234 (1994)

    Article  CAS  Google Scholar 

  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356-362 (2005)

    Article  CAS  Google Scholar 

  • Zhong Y, Liu T, Lai W, Tan Y, Tian D, Guo Z. Heme oxygenase-1-mediated reactive oxygen species reduction is involved in the inhibitory effect of curcumin on lipopolysaccharide-induced monocyte chemoattractant protein-1 production in RAW264.7 macrophages. Mol. Med. Rep. 7: 242-246 (2013)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea, a Grant funded by the Korea government (the Ministry of Education) (NRF‐2015R1D1A1A01059729; 2016), and a research Grant from the Seoul Women’s University (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Son Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and animal rights

There is no animal or human experiment in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.Y., Kang, B., Hong, J. et al. Parthenolide inhibits lipid accumulation via activation of Nrf2/Keap1 signaling during adipocyte differentiation. Food Sci Biotechnol 29, 431–440 (2020). https://doi.org/10.1007/s10068-019-00672-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00672-y

Keywords