Skip to main content

Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Spastin, an ATPase belonging to the AAA family of proteins is most commonly mutated in autosomal dominant hereditary spastic paraplegias (HSP). Spastin is a multifaceted protein with versatile role in cellular events, principally involved in microtubule dynamics. To gain further insight into the molecular function of spastin, we used the yeast two-hybrid approach to identify novel interacting partners of spastin. Using spastin as bait, we identified reticulon 1 (RTN1) and reticulon 3 (RTN3) as potential spastin interacting proteins. RTN1 and RTN3 belong to the reticulon (RTN) gene family, which are primarily expressed in the endoplasmic reticulum. Moreover, RTN1 is known to play a role in vesicular transport processes. Using in vitro and in vivo immunoprecipitation experiments, we were able to demonstrate that RTN1 interacts specifically with spastin. Intracellular distribution studies using immunostaining and overexpression of epitope-tagged protein revealed an obvious colocalization of spastin and RTN1 in discrete vesicles in the cytoplasm. Spastin mediates its interaction with RTN1 through its N-terminal region containing a microtubule-interacting and trafficking domain. It is interesting to note that the aberrant intracellular distribution of a truncated spastin protein was rescued by coexpression with RTN1, which highlights the physiological significance of this interaction. Our findings strengthen the hypothesis that disruption of intracellular vesicular transport processes could cause HSP. It is interesting to note that RTN1 is localized to 14q23.1 where SPG15 locus was mapped. Therefore, we considered RTN1 as a candidate gene for the SPG15 locus, but our mutational analysis possibly excludes RTN1 as causative gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1154

    Article  PubMed  CAS  Google Scholar 

  2. Fink JK (1997) Advances in hereditary spastic paraplegia. Curr Opin Neurol 10:313–318

    Article  PubMed  CAS  Google Scholar 

  3. Reid E (2003) Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet 40:81–86

    Article  PubMed  CAS  Google Scholar 

  4. Fink JK (2003) The hereditary spastic paraplegias: nine genes and counting. Arch Neurol 60:1045–1049

    Article  PubMed  Google Scholar 

  5. Schwarz GA, Liu CN (1956) Hereditary (familial) spastic paraplegia: further clinical and pathological observations. AMA Arch Neurol Psych 75:144–162

    CAS  Google Scholar 

  6. Behan WM, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20

    PubMed  CAS  Google Scholar 

  7. Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder JM, Prud’homme JF, Brice A, Fontaine B, Heilig B, Weissenbach J (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23:296–303

    Article  PubMed  CAS  Google Scholar 

  8. Lindsey JC, Lusher ME, Mc Dermott CJ, White KD, Reid E, Rubinsztein DC, Bashir R, Hazan J, Shaw PJ, Bushby KMD (2000) Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis. J Med Genet 37:759–765

    Article  PubMed  CAS  Google Scholar 

  9. Fonknechten N, Mavel D, Byrne P, Davoine CS, Cruaud C, Boentsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder JM, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme JF, Weissenbach J, Durr A, Hazan J (2000) Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet 9:637–644

    Article  PubMed  CAS  Google Scholar 

  10. Hentati A, Deng HX, Zhai H, Chen W, Yang Y, Hung WY, Azim AC, Bohlega S, Tandan R, Warner C, Laing NG, Cambi F, Mitsumoto H, Roos RP, Boustany RM, Ben Hamida M, Hentati F, Siddique, T (2000) Novel mutations in spastin gene and absence of correlation with age at onset of symptoms. Neurol 55:1388–1390

    PubMed  CAS  Google Scholar 

  11. Bürger J, Fonknechten N, Hoeltzenbein M, Neumann L, Bratanoff E, Hazan J, Reis A (2000) Hereditary spastic paraplegia caused by mutations in the SPG4 gene. Eur J Hum Genet 8:771–776

    Article  PubMed  Google Scholar 

  12. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, Hogan EL, Boustany RM, Vance JM, Nance MA, Pericak-Vance MA, Marchuk DA (2001) Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet 68:1077–1085

    Article  PubMed  CAS  Google Scholar 

  13. Sauter S, Miterski B, Klimpe S, Bönsch D, Schöls L, Visbeck A, Papke T, Hopf HC, Engel W, Deufel T, Neesen J (2002) Mutation analysis of the spastin gene (SPG4) in patients in Germany with autosomal dominant hereditary spastic paraplegia. Hum Mutat 20:127–132

    Article  PubMed  CAS  Google Scholar 

  14. Proukakis C, Hart P, Cornish A, Warner T, Crosby A (2002) Three novel spastin (SPG4) mutations in families with autosomal dominant hereditary spastic paraplegia. J Neurol Sci 201:65

    Article  PubMed  CAS  Google Scholar 

  15. Yabe I, Sasaki H, Tashiro K, Matsuura T, Takegami T, Satoh T (2002) Spastin gene mutation in Japanese with hereditary spastic paraplegia. J Med Genet 39:e46

    Article  PubMed  CAS  Google Scholar 

  16. Confalonieri F, Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. Bioessays 17:639–650

    Article  PubMed  CAS  Google Scholar 

  17. Patel S, Latterich M (1998) AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71

    Article  PubMed  CAS  Google Scholar 

  18. Frickey T, Lupas AN (2004) Phylogenetic analysis of AAA proteins. J Struct Biol 146:2–10

    Article  PubMed  CAS  Google Scholar 

  19. Beyer A (1997) Sequence analysis of the AAA protein family. Protein Sci 6:2043–2058

    Article  PubMed  CAS  Google Scholar 

  20. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75:419–429

    Article  PubMed  CAS  Google Scholar 

  21. Yoshimori T, Yamagata F, Yamamoto A, Mizushima N, Kabeya Y, Nara A, Miwako I, Ohashi M, Ohsumi M, Ohsumi Y (2000) The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells. Mol Biol Cell 11:747–763

    PubMed  CAS  Google Scholar 

  22. Charvin D, Cifuentes-Diaz C, Fonknechten N, Joshi V, Hazan J, Melki J, Betuing S (2003) Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum Mol Genet 12:71–78

    Article  PubMed  CAS  Google Scholar 

  23. Beetz C, Brodhun M, Moutzouris K, Kiehntopf M, Berndt A, Lehnert D, Deufel T, Bastmeyer M, Schickel J (2004) Identification of nuclear localisation sequences in spastin (SPG4) using a novel tetra-GFP reporter system. Biochem Biophys Res Commun 318:1079–1084

    Article  PubMed  CAS  Google Scholar 

  24. Errico A, Ballabio A, Rugarli EI (2002) Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet 11:153–163

    Article  PubMed  CAS  Google Scholar 

  25. McDermott CJ, Grierson AJ, Wood JD, Bingley M, Wharton SB, Bushby KM, Shaw PJ (2003) Hereditary spastic paraparesis: disrupted intracellular transport associated with spastin mutation. Ann Neurol 54:748–759

    Article  PubMed  Google Scholar 

  26. Reid E, Connell J, Edwards TL, Duley S, Brown SE, Sanderson C (2005) The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet 14:19–38

    Article  PubMed  CAS  Google Scholar 

  27. Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP (2005) Linking axonal degeneration to microtubule remodeling by spastin-mediated microtubule severing. J Cell Biol 168:599–606

    Article  PubMed  CAS  Google Scholar 

  28. Wharton SB, McDermott CJ, Grierson AJ, Wood JD, Gelsthorpe C, Ince PG, Shaw PJ (2003) The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 62:1166–1177

    PubMed  CAS  Google Scholar 

  29. Errico A, Claudiani P, D’Addio M, Rugarli EI (2004) Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody, and the distal axon. Hum Mol Genet 13:2121–2132

    Article  PubMed  CAS  Google Scholar 

  30. Trotta N, Orso G, Rossetto MG, Daga A, Broadie K (2004) The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr Biol 14:1135–1147

    Article  PubMed  CAS  Google Scholar 

  31. Claudiani P, Riano E, Errico A, Andolfi G, Rugarli EI (2005) Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res 309:358–369

    Article  PubMed  CAS  Google Scholar 

  32. Ciccarelli FD, Proukakis C, Patel H, Cros, H, Azam S, Patton MA, Bork P, Crosby AH (2003) The identification of a conserved domain in both spartin and spastin, mutated in hereditary spastic paraplegia. Genomics 81:437–441

    Article  PubMed  CAS  Google Scholar 

  33. Patel H, Cross H, Proukakis C, Hershberger R, Bork P, Ciccarelli FD, Patton MA, McKusick VA, Crosby AH (2002) SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 31:347–348

    PubMed  CAS  Google Scholar 

  34. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  PubMed  CAS  Google Scholar 

  35. Van de Velde HJ, Roebroek AJ, Senden NH, Ramaekers FC, Van de Ven WJ (1994) NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J Cell Sci 107:2403–2416

    PubMed  Google Scholar 

  36. Oertle T, Schwab ME (2003) Nogo and its paRTNers. Trends Cell Biol 13:187–194

    Article  PubMed  CAS  Google Scholar 

  37. Senden NH, Timmer ED, Boers JE, van de Velde HJ, Roebroek AJ, Van de Ven WJ, Broers JL, Ramaekers FC (1996) Neuroendocrine-specific protein C (NSP-C): subcellular localization and differential expression in relation to NSP-A. Eur J Cell Biol 69:197–213

    PubMed  CAS  Google Scholar 

  38. Iwahashi J, Hamada N (2003) Human reticulon 1-A and 1-B interact with a medium chain of the AP-2 adaptor complex. Cell Mol Biol (Noisy-le-grand) 49:OL467–OL471

    CAS  Google Scholar 

  39. Steiner P, Kulangara K, Sarria JC, Glauser L, Regazzi R, Hirling H (2004) Reticulon1-C/neuroendocrine-specific protein-C interacts with SNARE proteins. J Neurochem 89:569–580

    Article  PubMed  CAS  Google Scholar 

  40. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  41. Rupp RA, Snider L, Weintraub H (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev 8:1311–1323

    Article  PubMed  CAS  Google Scholar 

  42. Hughes CA, Byrne PC, Webb S, McMonagle P, Patterson V, Hutchinson M, Parfrey NA (2001) SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 56:1230–1233

    PubMed  CAS  Google Scholar 

  43. Oertle T, Klinger M, Stuermer CAO, Schwab ME (2003) A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 17:1238–1247

    Article  PubMed  CAS  Google Scholar 

  44. Roebroek AJM, van de Velde HJK, Van Bokhoven A, Broers JLV, Ramaekers FCS, Van de Ven WJM (1993) Cloning and expression of alternative transcripts of a novel neuroendocrinespecific gene and identification of its 135-kDa translational product. J Biol Chem 268:13439–13447

    PubMed  CAS  Google Scholar 

  45. Hens J, Nuydens R, Geerts H, Senden NH, Van de Ven WJ, Roebroek AJ, van de Velde HJ, Ramaekers FC, Broers JL (1998) Neuronal differentiation is accompanied by NSP-C expression. Cell Tissue Res 292:229–237

    Article  PubMed  CAS  Google Scholar 

  46. Moreira EF, Jaworski CJ, Rodriguez IR (1999) Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics 58:73–81

    Article  PubMed  CAS  Google Scholar 

  47. Kumamaru E, Kuo CH, Fujimoto T, Kohama K, Zeng LH, Taira E, Tanaka H, Toyoda T, Miki N (2004) Reticulon3 expression in rat optic and olfactory systems. Neurosci Lett 356:17–20

    Article  PubMed  CAS  Google Scholar 

  48. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Soellner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  49. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, Rubinsztein DC, Marchuk DA (2002) A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71:1189–1194

    Article  PubMed  CAS  Google Scholar 

  50. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29:166–173

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung, WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165

    Article  PubMed  CAS  Google Scholar 

  52. Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK (2001) Mutations in a newly identified GTPase cause autosomal dominant hereditary spastic paraparesis. Nat Genet 29:326–331

    Article  PubMed  CAS  Google Scholar 

  53. Zhu PP, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003) Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 278:49063–49071

    Article  PubMed  CAS  Google Scholar 

  54. Simpson MA, Cross H, Proukakis C, Pryde A, Hershberger R, Chatonnet A, Patton MA, Crosby AH (2003) Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 73:1147–1156

    Article  PubMed  CAS  Google Scholar 

  55. Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK (2003) NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet 73:967–971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank P. D. V. Krishna for assistance in figure preparation and N. Doerwald for excellent technical assistance. This work was funded by the Deutsche Forschungsgemeinschaft through the DFG-Research Center for Molecular Physiology of the Brain. Also, S. Sauter was supported by a grant from the Medical School of the University of Goettingen. The experiments comply with the guidelines approved by the University of Goettingen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf U. Mannan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Primer sequences for amplifying and sequencing of RTN1 (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannan, A.U., Boehm, J., Sauter, S.M. et al. Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein. Neurogenetics 7, 93–103 (2006). https://doi.org/10.1007/s10048-006-0034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0034-4

Keywords