Skip to main content

Automated conformational energy fitting for force-field development

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a general conformational-energy fitting procedure based on Monte Carlo simulated annealing (MCSA) for application in the development of molecular mechanics force fields. Starting with a target potential energy surface and an unparametrized molecular mechanics potential energy surface, an optimized set of either dihedral or grid-based correction map (CMAP) parameters is produced that minimizes the root mean squared error RMSE between the parametrized and targeted energies. The fitting is done using an MCSA search in parameter space and consistently converges to the same RMSE irrespective of the randomized parameters used to seed the search. Any number of dihedral parameters can be simultaneously parametrized, allowing for fitting to multi-dimensional potential energy scans. Fitting options for dihedral parameters include non-uniform weighting of the target data, constraining multiple optimized parameters to the same value, constraining parameters to be no greater than a user-specified maximum value, including all or only a subset of multiplicities defining the dihedral Fourier series, and optimization of phase angles in addition to force constants. The dihedral parameter fitting algorithm’s performance is characterized through multi-dimensional fitting of cyclohexane, tetrahydropyran, and hexopyranose monosaccharide energetics, with the latter case having a 30-dimensional parameter space. The CMAP fitting is applied in the context of polypeptides, and is used to develop a parametrization that simultaneously captures the φ,ψ energetics of the alanine dipeptide and the alanine tetrapeptide. Because the dihedral energy term is common to many force fields, we have implemented the dihedral-fitting algorithm in the portable Python scripting language and have made it freely available as “fit_dihedral.py” for download at http://mackerell.umaryland.edu.

Alanine tetrapeptide energies at the RI-MP2/cc-pVTZ//MP2/6-31G(d)level [quantum mechanic (QM)], the molecular mechanic (MM) representation using grid-based correction map (CMAP) to directly reproduce the alaninedipeptide QM surface (before fitting), and the MM representation using aCMAP simultaneously fit to alanine dipeptide and tetrapeptide (after fitting)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 a, b
Fig. 8 a–d

Similar content being viewed by others

References

  1. MacKerell AD Jr (2004) J Comput Chem 25:1584–1604

    Article  CAS  Google Scholar 

  2. Halgren TA (1996) J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  3. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  4. Wang JM, Wang W, Kollman PA, Case DA (2006) J Mol Graphics Modell 25:247–260

    Article  Google Scholar 

  5. MacKerell AD Jr, Feig M, Brooks CL III (2004) J Am Chem Soc 126:698–699

    Article  CAS  Google Scholar 

  6. MacKerell AD Jr, Feig M, Brooks CL III (2004) J Comput Chem 25:1400–1415

    Article  CAS  Google Scholar 

  7. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  8. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  9. Wang JM, Kollman PA (2001) J Comput Chem 22:1219–1228

    Article  CAS  Google Scholar 

  10. Park S, Radmer RJ, Klein TE, Pande VS (2005) J Comput Chem 26:1612–1616

    Article  CAS  Google Scholar 

  11. Okur A, Strockbine B, Hornak V, Simmerling C (2003) J Comput Chem 24:21–31

    Article  CAS  Google Scholar 

  12. Maxwell DS, Tirado-Rives J (1994) Fitpar. Yale University, New Haven, CT

    Google Scholar 

  13. Norrby PO, Liljefors T (1998) J Comput Chem 19:1146–1166

    Article  CAS  Google Scholar 

  14. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  15. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  16. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  17. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  18. Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  19. Weigend F, Haser M (1997) Theor Chem Acc 97:331–340

    CAS  Google Scholar 

  20. Distasio RA, Steele RP, Rhee YM, Shao YH, Head-Gordon M (2007) J Comput Chem 28:839–856

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda K, Kitao O, Nakai H, Klene M, Li TW, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  22. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172–3191

    Article  CAS  Google Scholar 

  23. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  24. Levitt M, Lifson S (1969) J Mol Biol 46:269–279

    Article  CAS  Google Scholar 

  25. Fletcher R, Reeves C (1964) Comput J 7:149–154

    Article  Google Scholar 

  26. Vorobyov I, Anisimov VM, Greene S, Venable RM, Moser A, Pastor RW, MacKerell AD Jr (2007) J Chem Theory Comput 3:1120–1133

    Article  CAS  Google Scholar 

  27. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell AD Jr (2008) J Comput Chem (in press)

  28. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220:671–680

    Article  Google Scholar 

  29. Blondel A, Karplus M (1996) J Comput Chem 17:1132–1141

    Article  CAS  Google Scholar 

  30. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829

    Article  CAS  Google Scholar 

  31. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: Struct, Funct, Bioinf 65:712–725

    Article  CAS  Google Scholar 

  32. Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Proteins: Struct, Funct, Bioinf 50:437–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH GM070855 and GM051501 (ADM) and F32CA1197712 (OG). The authors wish to thank Professor Carlos Simmerling for sharing alanine tetrapeptide conformations, and to acknowledge generous grants of computer time from the National Cancer Institute Advanced Biomedical Computing Center and Department of Defense High Performance Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. MacKerell Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guvench, O., MacKerell, A.D. Automated conformational energy fitting for force-field development. J Mol Model 14, 667–679 (2008). https://doi.org/10.1007/s00894-008-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0305-0

Keywords