Abstract
We present a general conformational-energy fitting procedure based on Monte Carlo simulated annealing (MCSA) for application in the development of molecular mechanics force fields. Starting with a target potential energy surface and an unparametrized molecular mechanics potential energy surface, an optimized set of either dihedral or grid-based correction map (CMAP) parameters is produced that minimizes the root mean squared error RMSE between the parametrized and targeted energies. The fitting is done using an MCSA search in parameter space and consistently converges to the same RMSE irrespective of the randomized parameters used to seed the search. Any number of dihedral parameters can be simultaneously parametrized, allowing for fitting to multi-dimensional potential energy scans. Fitting options for dihedral parameters include non-uniform weighting of the target data, constraining multiple optimized parameters to the same value, constraining parameters to be no greater than a user-specified maximum value, including all or only a subset of multiplicities defining the dihedral Fourier series, and optimization of phase angles in addition to force constants. The dihedral parameter fitting algorithm’s performance is characterized through multi-dimensional fitting of cyclohexane, tetrahydropyran, and hexopyranose monosaccharide energetics, with the latter case having a 30-dimensional parameter space. The CMAP fitting is applied in the context of polypeptides, and is used to develop a parametrization that simultaneously captures the φ,ψ energetics of the alanine dipeptide and the alanine tetrapeptide. Because the dihedral energy term is common to many force fields, we have implemented the dihedral-fitting algorithm in the portable Python scripting language and have made it freely available as “fit_dihedral.py” for download at http://mackerell.umaryland.edu.
Similar content being viewed by others
References
MacKerell AD Jr (2004) J Comput Chem 25:1584–1604
Halgren TA (1996) J Comput Chem 17:490–519
Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174
Wang JM, Wang W, Kollman PA, Case DA (2006) J Mol Graphics Modell 25:247–260
MacKerell AD Jr, Feig M, Brooks CL III (2004) J Am Chem Soc 126:698–699
MacKerell AD Jr, Feig M, Brooks CL III (2004) J Comput Chem 25:1400–1415
MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487
Wang JM, Kollman PA (2001) J Comput Chem 22:1219–1228
Park S, Radmer RJ, Klein TE, Pande VS (2005) J Comput Chem 26:1612–1616
Okur A, Strockbine B, Hornak V, Simmerling C (2003) J Comput Chem 24:21–31
Maxwell DS, Tirado-Rives J (1994) Fitpar. Yale University, New Haven, CT
Norrby PO, Liljefors T (1998) J Comput Chem 19:1146–1166
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087–1092
Møller C, Plesset MS (1934) Phys Rev 46:618–622
Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222
Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371
Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359–363
Weigend F, Haser M (1997) Theor Chem Acc 97:331–340
Distasio RA, Steele RP, Rhee YM, Shao YH, Head-Gordon M (2007) J Comput Chem 28:839–856
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda K, Kitao O, Nakai H, Klene M, Li TW, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh PA
Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:3172–3191
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217
Levitt M, Lifson S (1969) J Mol Biol 46:269–279
Fletcher R, Reeves C (1964) Comput J 7:149–154
Vorobyov I, Anisimov VM, Greene S, Venable RM, Moser A, Pastor RW, MacKerell AD Jr (2007) J Chem Theory Comput 3:1120–1133
Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell AD Jr (2008) J Comput Chem (in press)
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220:671–680
Blondel A, Karplus M (1996) J Comput Chem 17:1132–1141
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: Struct, Funct, Bioinf 65:712–725
Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Proteins: Struct, Funct, Bioinf 50:437–450
Acknowledgments
This work was supported by NIH GM070855 and GM051501 (ADM) and F32CA1197712 (OG). The authors wish to thank Professor Carlos Simmerling for sharing alanine tetrapeptide conformations, and to acknowledge generous grants of computer time from the National Cancer Institute Advanced Biomedical Computing Center and Department of Defense High Performance Computing.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guvench, O., MacKerell, A.D. Automated conformational energy fitting for force-field development. J Mol Model 14, 667–679 (2008). https://doi.org/10.1007/s00894-008-0305-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-008-0305-0